• Title/Summary/Keyword: space environment simulation

Search Result 582, Processing Time 0.026 seconds

Mobile Augmented Reality based CFD Simuation Post-Processor (모바일 증강현실 기술을 활용한 유체시뮬레이션 후처리기 연구)

  • Park, Sang-Jin;Kim, Myungil;Kim, Ho-yoon;Seo, Dong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.523-533
    • /
    • 2019
  • The convergence of engineering and IT technology has brought many changes to the industry as well as academic research. In particular, computer simulation technology has evolved to a level that can accurately simulate actual physical phenomena and analyze them in real time. In this paper, we describe the CFD technology, which is mainly used in industry, and the post processor that uses the augmented reality which is emerging as the post-processing. Research on the visualization of fluid simulation results using AR technology is actively being carried out. However, due to the large size of the result data, it is limited to researches that are published in a desktop environment. Therefore, it is limitation that needs to be reviewed in actual space. In this paper, we discuss how to solve these problems. We analyze the fluid analysis results in the post-processing, and then perform optimizing data (more than 70%)to support operation in the mobile environment. In the visualization, lightweight data is used to perform real-time tracking using cloud computing, The analysis result is matched to the screen and visualized. This allows the user to review and analyze the fluid analysis results in an efficient and immersive manner in the various spaces where the simulation is performed.

Position Control of Mobile Robot for Human-Following in Intelligent Space with Distributed Sensors

  • Jin Tae-Seok;Lee Jang-Myung;Hashimoto Hideki
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.204-216
    • /
    • 2006
  • Latest advances in hardware technology and state of the art of mobile robot and artificial intelligence research can be employed to develop autonomous and distributed monitoring systems. And mobile service robot requires the perception of its present position to coexist with humans and support humans effectively in populated environments. To realize these abilities, robot needs to keep track of relevant changes in the environment. This paper proposes a localization of mobile robot using the images by distributed intelligent networked devices (DINDs) in intelligent space (ISpace) is used in order to achieve these goals. This scheme combines data from the observed position using dead-reckoning sensors and the estimated position using images of moving object, such as those of a walking human, used to determine the moving location of a mobile robot. The moving object is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the intelligent space. Using the a priori known path of a moving object and a perspective camera model, the geometric constraint equations that represent the relation between image frame coordinates of a moving object and the estimated position of the robot are derived. The proposed method utilizes the error between the observed and estimated image coordinates to localize the mobile robot, and the Kalman filtering scheme is used to estimate the location of moving robot. The proposed approach is applied for a mobile robot in ISpace to show the reduction of uncertainty in the determining of the location of the mobile robot. Its performance is verified by computer simulation and experiment.

The Analysis of Runoff Characteristics by Alterations of SCS-CN Value using LID Method (LID 기법 적용에 의한 SCS-CN값 변화가 강우유출특성에 미치는 영향 분석)

  • Kwon, Jun-Hee;Park, In-Hyeok;Ha, Sung-Ryoung
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.1
    • /
    • pp.49-57
    • /
    • 2010
  • The objective of the research is to analyze changing trend of water discharge in precipitation, according to changing land use, through an environment-friendly urban development method called LID. The study chose S1 basin (Separated Sewer districts) in Cheongju region for survey. Among LID methods, relatively more applicable methods of green rooftop space and parking lot with permeable material were selected to construct plausible scenarios. Curve Number (CN) value was calculated due to land use patterns in each scenario, and SWMM model simulation were conducted during 2008 for comparative analysis. For Case 1, only parking lot with permeable material was applied to the scenario. Green rooftop space I and II were applied to Case 2 and 3 respectively. For Case 4 and 5, green rooftop space I and II were applied, in addition to parking lot with permeable material, Calculation of CN value showed that for S1 basin, the value was 88.1 (prior to scenario application), 86.5 (Case 1), 81.9 (Case 2), 68.5 (Case 3), 80.4 (Case 4) and 67.2 (Case 5). Changing pattern of rain water discharge was analyzed for each scenario. For Case 1, the change was not remarkable before and after application of scenario. In Case 2 and 4, the impact of rain water discharge as source of pollutant fell to 20~30%. The rate dropped to 30~50% in Case 3 and 5 respectively. The result demonstrates that the amount of rain water discharge, amount and frequency of sewer overflow, frequency of rain water discharge, and pollution load decreased in accordance with declining CN value in each scenario. In installing green rooftop space, the effect was twice greater when rain water discharge was directly infiltrated into soil.

Mechanism Modeling and Analysis of Deployable Satellite Antenna (전개형 위성 안테나 메커니즘 모델링 및 분석)

  • Lee, Seung-Yup;Jeong, Suk-Yong;Choi, Yoon-Hyuk;Cho, Ki-Dae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.601-609
    • /
    • 2014
  • Large number of SAR(Synthetic Aperture Radar) satellites, one type of earth observation satellite, have been developed as they have the advantage of not being affected by surrounding environment during the earth image acquisition. In order to gain high image quality, SAR antenna should have large diameter. However, internal space of satellite launch vehicle is limited and this leads SAR antenna to be designed deployable so that it can be folded in launch vehicle and unfolded in space. In this research, values of various design factors of deployable satellite antenna were chosen considering satellite's target mission. Configuration of deployable satellite antenna was designed by applying the chosen values of design factors, and variation in deployable satellite antenna during satellite maneuver was observed through simulation.

Analysis of the Single Event Effect of the Science Technology Satellite-3 On-Board Computer under Proton Irradiation (과학기술위성 3호 온보드 컴퓨터의 양성자 빔에 의한 Single Event Effect 분석)

  • Kang, Dong-Soo;Oh, Dae-Soo;Ko, Dae-Ho;Baik, Jong-Chul;Kim, Hyung-Shin;Jhang, Kyoung-Son
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1174-1180
    • /
    • 2011
  • Field Programmable Gate Array(FPGA)s are replacing traditional integrated circuits for space applications due to their lower development cost as well as reconfigurability. However, they are very sensitive to single event upset (SEU) caused by space radiation environment. In order to mitigate the SEU, on-board computer of STSAT-3 employed a triple modular redundancy(TMR) and scrubbing scheme. Experimental results showed that upset threshold energy was improved from 10.6 MeV to 20.3 MeV when the TMR and the scrubbing were applied to the on-board computer. Combining the experimental results with the orbit simulation results, calculated bit-flip rate of on-board computer is 1.23 bit-flips/day assuming in the worst case of STSAT-3 orbit.

Residual ISI cancellation and EM-based channel estimation for STBC/SFBC OFDM with insufficient cyclic prefix (불충분한 주기적 프리픽스를 갖는 STBC/SFBC OFDM 시스템을 위한 잔재 ISI 제거 기법 및 EM 기반 채널 추정 기법)

  • Won, Hui-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11A
    • /
    • pp.1154-1163
    • /
    • 2007
  • For orthogonal frequency division multiplexing (OFDM), cyclic prefix (CP) should be longer than the length of channel impulse response. In order to prevent a loss of bandwidth efficiency due to the use of a CP, residual intersymbol interference cancellation (RISIC) method has recently been developed. In this paper, we first apply the RISIC algorithm to the space-time block coded (STBC) OFDM and the space-frequency block coded (SFBC) OFDM with insufficient CP. It is shown that in the STBC OFDM, tail cancellation as well as cyclic restoration of the RISIC should be repeated. Second, we propose iterative channel estimation method for the RISIC in the STBC OFDM system with insufficient CP. Based on the expectation-maximization (EM) algorithm, the proposed estimation method exploits the extrinsic probabilities of the channel decoder iteratively. The performance of the proposed method is evaluated by computer simulation in a multipath fading environment.

Performance Evaluation of Turbo Codes by Soft Detection Metrics of STBC over an IEEE 802.16e Link (IEEE 802.16e 링크에서 시공간 블록 부호의 연판정 검출에 따른 터보 부호의 성능평가)

  • Kim, Young-Min;Kim, Soo-Young;Lim, Kwang-Jae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.1-8
    • /
    • 2010
  • Multi antenna techniques using space-time codes can achieve diversity gains in a multi-path environment without additional bandwidth requirement. Most of the 4G candidate standards including the IEEE 802.16e adopt multi-input multi-output (MIMO) schemes to achieve either high throughput performance or diversity gains. In these 4G candidate standards, turbo codes using an iterative decoder with soft input soft output are used to overcome serious channel fading. For this reason, the estimated signal values from MIMO detectors should be soft decision detection values. In this paper, we propose efficient methods to estimate soft decision detection values for various space time coding schemes, and provide the simulation results of turbo coded space time coding scheme over an IEEE 802.16e link.

The Novel ATSC Signal Detection and Data Fusion Algorithms for CR System in TV White Space (TV White Space에서 CR 시스템을 위한 새로운 ATSC 신호 검출 및 데이터 통합 알고리즘)

  • Lim, Sun-Min;Jung, Hoi-Yoon;Kim, Sang-Won;Jeong, Byung-Jang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.8A
    • /
    • pp.723-729
    • /
    • 2011
  • FCC of U.S. permitted usage of unlicensed system on unused spectrum in TV white space after DTV transition. The unlicensed systems are required to avoid harmful interference to licensed users by employing geo-location database and spectrum sensing. The conventional spectrum sensing algorithms for ATSC signal were focused on detection of pilot signal. However, they can not guarantee detection of ATSC signal when pilot signal is attenuated by channel environment such as fading. To overcome drawbacks of conventional schemes, in this paper, we propose a signal detection and data fusion algorithm using cyclo-stationary feature weighted by signal energy. Simulation results verify that the proposed algorithm can provide 2dB SNR gain for 90% detection probability compare with the conventional scheme. We can reduce quiet period for spectrum sensing and improve signal detection probability by employing the proposed algorithm.

Integrated Optimization Design of Carbon Fiber Composite Framework for Small Lightweight Space Camera

  • Yang, Shuai;Sha, Wei;Chen, Changzheng;Zhang, Xingxiang;Ren, Jianyue
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.389-395
    • /
    • 2016
  • A Carbon Fiber Composite (CFC) framework was designed for a small lightweight space camera. According to the distribution characteristics of each optical element in the optical system, CFC (M40J) was chosen to accomplish the design of the framework. TC4 embedded parts were used to solve the low accuracy of the CFC framework interface problem. An integrated optimization method and the optimization strategy which combined a genetic global optimization algorithm with a downhill simplex local optimization algorithm were adopted to optimize the structure parameters of the framework. After optimization, the total weight of the CFC framework and the TC4 embedded parts is 15.6 kg, accounting for only 18.4% that of the camera. The first order frequency of the camera reaches 104.8 Hz. Finally, a mechanical environment test was performed, and the result demonstrates that the first order frequency of the camera is 102 Hz, which is consistent with the simulation result. It further verifies the rationality and correctness of the optimization result. The integrated optimization method mentioned in this paper can be applied to the structure design of other space cameras, which can greatly improve the structure design efficiency.

A Study on the Thermal Design for A Signal Processor in the Micro-Wave Seeker (초고주파 탐색기 신호처리부의 방열설계에 관한 연구)

  • Lee, Won-Hee;Yu, Young-Joon;Kim, Ho-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.76-83
    • /
    • 2011
  • This paper focuses on the thermal design of a signal processor in Micro-Wave Seeker. High temperature environment and ESS(Environmental Stress Screening) test condition should be considered in designing a signal processor. First, we performed the thermal analysis to know conditions under which a signal processor is thermally reliable. As a result of thermal analysis, we found that adopting heat transfer block to the thermally fragile components is most efficient, because the heat transfer block can control the thermal loads of the individual components. Next, we verified this solution by numerical simulation and experiment and concluded that thermal reliability of a signal processor can be achieved. Maximum temperature difference between numerical simulation and experiment is about $2^{\circ}C$.