• Title/Summary/Keyword: soybean sprout rotting bacteria

Search Result 6, Processing Time 0.018 seconds

Population Density Changes of Bacteria and Soybean Sprout Rotting Bacteria on Soybean Leaves (콩 잎에 서식하는 세균 및 콩나물 부패균의 밀도 변화)

  • 최재을;이은정;신철우
    • Korean Journal of Plant Resources
    • /
    • v.12 no.2
    • /
    • pp.152-160
    • /
    • 1999
  • Bacterial population density on soybean leaves was $10^2~10^5CFU/cm^2$. Bacterial population density was increased by progress of plant growth stage. Population density of soybean sprout rotting bacteria on soybean leaves was $0~10^3CFU/cm^2$. Population density of soybean sprouts rotting bacteria was related to cultivating area, but not related to plant growth stage. Cultivar and population density of soybean sprout rotting bacteria were less corelated, and varied by plant growth stages and plant parts. Erwina cypripedii, E. carotovora subsp. carotovora, Xanthomonas campestris pv. glycines, Staphylococcus sp., and Micrococcus sp. were identified as pathogenic bacteria causing soybean sprout rot. In generally population density of E. cypripedii, E. carotovora subsp. carotovora, Micrococcus sp., and X. campestris pv. glycines were high.

  • PDF

Study on the Antagonism of Useful Microbes against Soybean Sprout Rotting Pathogens and Their Effect on the Growth of Soybean Sprouts (갈항미생물이 콩나물 부패균에 미치는 향균능력과 콩나물 생육 특성)

  • 김도완
    • Culinary science and hospitality research
    • /
    • v.9 no.4
    • /
    • pp.113-122
    • /
    • 2003
  • This study was conducted to examine the antagonism of useful microbes against soybean sprout rotting pathogens and their effect on the growth of soybean sprouts. The antagonism against soybean sprout rotting pathogens and the effect on the growth of soybean sprouts were examined by using P. areofacience 14H-3, P. fluorescens R1-12 and B. cereus Yell, bacteria were shown to inhibit mycellial growth of Rhizotonia solani strongly. The results of this study are summarized as follows. P. areofacience 14H-3 and B. cereus Yell were highly antagonistic against Rizoctonia solani, while they were especially highly antagonistic against bacterial diseases. The effect of inhibiting the proliferation of soybean sprout rotting pathogens was also examined by adding the culture solution for antagonistic bacteria to the PDA. Both P. areofacience 14H-3 and P. fluorescens Rl-12 showed the inhibition rate of 78.8%, while B. cereus Yell did 52.9%. The fresh weight and length of soybean sprouts were measured after raising them with added antagonistic microbes and culture medium. Soybean sprouts treated with B. cereus Yell showed increased higher, compared with those not treated with it. Soybean sprouts were also raised in the culture solution with antagonistic bacteria to examine the growth of soybean sprouts. Soybean sprouts treated with the culture solution of 200 times showed better growth than those not treated with it. Analyze proximate composition in soybean sprout showed that moisture, ash, total sugar did not appear difference, but in case of crude protein B. cereus Yell(8.9%) increased about 2 times than control(3.6%), but occasion of crude fat and crude fiber were P. areofacience 14H-3, P. fluorescens Rl-12 increased about each 2 times than control. In occasion of vitamin, bacterial antagonist(9.4∼10.8mg%) was more higher than control(9.9mg%).

  • PDF

Pathogenic bacteria causing rot in commercial soybean sprout cultivation

  • Yun, Sung-Chul;Kim, Yong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.2
    • /
    • pp.113-119
    • /
    • 2003
  • Soybean sprout pathogenic bacteria were isolated from the large, deep containers of a commercial factory. Over a period of one year, 40 pathogenic-like bacteria were isolated among a total of 732 isolates. In addition to bacteria previously reported to be associated with rotting, such as Pseudomonas putida and Erwinia carotovora, several other genera were also identified: Acinetobacter spp., Chryseobacterium spp., Klebsiella sp., Pantoea agglomerans, Bacillus sp. Fatty acid methyl ester (FAME) analysis using the Microbial ID (MIDI) system, and 16s rRNA sequence analysis, yielded identical results, confirming the identities of these microorganisms. Several types of selective media were not good for identification and determination of population structure in commercial environments, as colony type was not specific to the genus. There was no dominant bacterium, and we were not able to find the main bacterium responsible for soybean spout rot. Even though we did not identify a major target for controlling rot or screening for resistant cultivars, the results of this study indicated that bacterial rot of soybean sprout is endemic. In addition, it emerged that factory epidemics in summer are not caused by the bacteria isolated in this study.