• Title/Summary/Keyword: soybean fermentation

Search Result 631, Processing Time 0.033 seconds

Study on the Dextran and the Inside Structure of Jeung-Pyun of Adding Soybean (콩 첨가 증편의 Dextran과 내부구조에 관한 연구)

  • 신광숙;우경자
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.11 no.2
    • /
    • pp.121-130
    • /
    • 2001
  • Jeung-Pyun Is a traditional fermented Korean food made with rice flour, water, sugar salt and unrefined rice wine(Tak-ju). In order to investigate how the addition of soybean and dextran have an influence on Jeung-Pyun fermentation and forming structure of Jeun-Pyun, adding soybean 20% and dextran 1%based on rice weight, we measured physicochemical properties. Also we measured dextran content of Jeung-Pyun batter according to the fermentation time and observed the inside of Jeung-Pyun by SEM in order to find out air pore condition. The dextran content of rice Jeung-Pyun and Jeung-Pyun adding soybean 20% was gradually increased as fermentation time was longer and Jeung-Pyun adding soybean 20% was higher than rice Jeung-Pyun. The specific volume of rice Jeung-Pyun and Jeung-Pyun adding soybean 20% was increased up to a fermentation time of 7~ 10 hours but it was decreased as fermentation time was longer. In the inside structure of Jeung-Pyun observed by SEM, the fermentation condition of Jeung-Pyun fermented for 3 and 7 hour was better and air pore size became larger, the number of it was decreased as fermentation time was longer. The air pore size of soybean 20% Jeung-Pyun is smaller more uniform than that of rice Jeung-Pyun. In conclusion. it can be suggested that the audition of soybean improves the quality of Jeung-Pyun and dextran has an influence on fermentation and forming structure of Jeung-Pyun.

  • PDF

Solubility, Viscosity, Water Holding Capacity, and Oil Holding Capacity of Soybean Proteins by Bacillus subtilis and/or Lactobacillus bulgaricus (Bacillus subtilis와 Lactobacillus bulgaricus에 의한 청국장 단백질의 용해성, 점성, 보수성 및 보유성)

  • Lee, Jin-Woo
    • The Korean Journal of Community Living Science
    • /
    • v.18 no.3
    • /
    • pp.399-406
    • /
    • 2007
  • Soybean seeds were fermented by Bacillus subtilis and/or Lactobacillus bulgaricus to improve solubility, viscosity, water holding capacity and oil holding capacity of soybean proteins in Chongkukjang. The maximum colony forming unit and protease activity of B. subtilis or L bulgaricus were observed after 60 hours of fermentation, and those of the mixed fermentation by two microorganisms were steadily increased during the fermentation periods. Solubilities of soybean proteins by B. subtilis or L bulgaricus were steadily increased before the values were considerably increased to 60 hours of fermentation, whereas water holding capacities of the proteins were decreased by B. subtilis or L. bulgaricus and those of the mixed fermentation were decreased progressively. Viscosities of soybean proteins by B. subtilis and/or L. bulgaricus were decreased progressively during the fermentation. Viscosities of soybean proteins by B. subtilis and/or L. bulgaricus were decreased progressively during the fermentation. Oil holding capacities of soybeans by B. subtilis or L. bulgaricus were maximum at 20 or 80 hours of fermentation and those of the mixed fermentation were decreased after 10 hours of the fermentation.

  • PDF

A Plan for Improving Quality of Traditional Soybean Paste (전통된장의 품질개선에 관한 연구)

  • 최동원
    • The Korean Journal of Food And Nutrition
    • /
    • v.16 no.3
    • /
    • pp.218-223
    • /
    • 2003
  • This study is proceeded on the development of standard method for making soybean paste by Korean traditional method. Fermentation condition of Meju was 1) Pre-fermentation : 30 days in about 20$^{\circ}C$ room, 2) Main fermentation : 5 days in 30$^{\circ}C$ or upper temperature, 3) Post fermentation and drying : 30 days in well sunlightened room in January. Meju was soaked in 18% salt solution(Meju 7kg/salt solution 20L) for 35~40 days (from late February to early April) and after soaking Meju was filtered as unsoluble solute and crushed and put into traditional Korean receptacle(named 'Dok'). Crushed Meju was stored from early April to mid September and Meju was changed into soybean paste(Doen-jang). During fermentation amino acid nitrogen in Doen-jang was slightly increased in early period and decreased lately. It has been proved that by panel test soybean paste made by the method suggested in this study was more excellent than commercially fermented soybean paste. This study has presented the possibility of commercial production of soybean paste made by traditional method.

The Quality of Doenjang (Soybean Paste) Manufactured with Bacillus brevis (Bacillus brevis 로 제조한 된장의 품질)

  • 양성호;최명락;지원대;정영건;김종규
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.6
    • /
    • pp.980-985
    • /
    • 1994
  • We investigated the quality of soybean paste(Doenjang) fermented by BAcillus brevis. The results obtained were as follows : soybean paste fermented by Bacillus brevis had alkaline pH and yellow ochre color. Dextrinizing activity was about 98 D.P. unit from 5th to 25th day of fermentation at 3$0^{\circ}C$ and after that day somewhat decreased . Saccharifying activity was respectively 6.1, 7.2, 6.8, 6.4 S.P. unit on 5, 15, 25 and 35th day of fermentation. Protease activity suddenly increased after 15th day of fermentation and was 250, 275, 299 unit on15, 25, 35 th day of fermentation , respectively. The most abundant free amino acid was found to be glutamic acid (561.8mg%) in soybean paste fermented by Bacillus brevis. In case of free sugar and non-volatile organic acid, fructose and oxalic acid showed highest content of 10.25mg% on 25th day and 12.20mg% on 15th day. The contents of free amino acids, free sugars, organic acids in soybean paste fermented by B.brevis were most abundant after 25 days of fermentation and this results were similar to that of traditional soybean paste. The odor of soybean paste fermented by Bacillus brevis was improved to be a nice soybean paste odor on 25th day of fermentation. However, sensory evaluation value of the taste of it decreased after 10 th day of fermentation.

  • PDF

Studies on the supplementation of fermented soybean by Bacillus subtilis (natto) on performances, prevention against disease in broilers (낫도균을 이용한 닭 생산생과 질병예방에 관한 연구)

  • Kwon Mee-Soon;Lee Ji-Yoog;Park In-Gyu;Yoon Yeo-Baik;Joung Dong-Suk
    • Korean Journal of Veterinary Service
    • /
    • v.29 no.3
    • /
    • pp.257-266
    • /
    • 2006
  • The present study was done to investigate the effect of dietary supplemental freezer dry powder fermentation soybean by Bacillus subtilis (natto) on the growth performance and intestinal microflora, prevention of fowl typhoid infection, the uptake of vegetative diet in broiler chickens. The chickens were fed control diet (supplement antibiotics) and fermentation soybean (0.75, 1.5, 3%) diets. A total of 280 one day old broiler chickens with randomly mixed sexes were fed the four diets for 6 weeks. Body weight gain of chicken fed 1.5% fermentation soybean by B subtilis tend to increase higher than the control from 6th week. Chickens fed diets containing 1.5% fermentation soybean by B subtilis had higher intake than those fed the other levels to the 3th weeks, but lower than control from the 4th week to the 6th week. Feed conversion also improved significantly in the supplemental 1.5% fermentation soybean by B subtilis from the 4th week to the 6th week. The number of B subtilis and Lactobacillus spp in the ileum and cecum tend to increase in the supplemental fermentation soybean by B subtilis at 6 week of age, but was not significantly different. In the nutrient digestibility, the feed conversion on the supplemental 1.5% fermentation soybean by B subtilis was better than the control and the weight of drying feces lower than the control. In test of S. gallinarum intramuscular inoculation, reisolation rate of S gallinarum in liver and feces 1.5% the fermentation soybean by B subtilis 75% (liver), 17% (feces) had decreased than the control.

The Effect of Korean Soysauce and Soypaste Making on Soybean Protein Quality Part I. Chemical Changes During Meju Making (재래식 간장 및 된장 제조가 대두 단백질의 영양가에 미치는 영향 제1보 재래식 메주 제조의 성분변화)

  • Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.12-18
    • /
    • 1976
  • Fermented soybean Mejus were prepared in the laboratory with varying lengths of fermentation and the changes in the Chemical composition during the Meju making were determined. The moisture of cooked soybean was gradually evaporated during the Meju fermentation, and after 2 months of fermentation the water level reached to the level of the raw soybean. The concentrations of crude fat, crude protein and ash of the dry matter of soybean did not change considerably during soaking, cooking and Meju fermentation of up to 3 months, whereas carbohyrates decreased significantly during soaking and Meju fermentation. The percentage retention of the nutrients were 58% for carbohydrates and 93% for crude fat and crude protein. The nitrogen solubility of soybean decreased drastically during cooking, from 79% to 21%, while Meju fermentation increased it to approximately 30% in the first week and this level remained constant for the duration of the fermentation. The concentration of free amino nitrogen in total nitrogen of soybean decreased during cooking, from 7% to 3%, but fermentation of Meju liberated it to the level of raw soybean. The concentration of free amino-nitrogen in the total-N of soybean was increased by cooking and further increased during Meju fermentation. The amino acid pattern of soybean did not change significantly during soaking, cooking and the Meju fermentation up to 3 months. Serine and the basic amino acids, lysine, arginine and histidine, decreased to the range $81{\sim}87%$ of the raw soybean during the first month of Meju fermentation and thereafter remained almost constant. The total amino acid per 16g nitrogen was 99 g incooked soybean and 93 g in 1 month Meju, indicating a 6% reduction.

  • PDF

The Physicochemical Change of Soybean-Leaf Water Kimchis during Fermentation (콩잎 물김치의 숙성과정 중 이화학적 변화)

  • 이봉희;김경자
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.13 no.6
    • /
    • pp.601-607
    • /
    • 2003
  • This study was attempted to investigate the physicochemical changes during soybean-leaf water kimchis fermentation by adding wheat flour in cooking water. Soybean-leaf water kimchis with five different levels of wheat flour in cooking water(0%;A, 5%;B 10%;c, 15%;D, 20%;E) were tested for rhological parameters, fine structural changes, sensory evaluations and chemical analysis. The composition of the soybean-leaf was moisture (80.9%), protein(6.8%), fat(0.6%), ash(2.1%) and alkalinity (+14.9). The amount of reducing sugars of sample A and other samples were 0.75% and 1.08∼1.4% in the initial fermentation stage, but decreased to 0.3 and 0.43∼0.50% in the later fermentation stage, respectively. The pH of sample A decreased from 5.17 to 4.72 during the initial fermentation. On sample B, C, D and E, pH's decreased rapidly during the initial fermentation, but they did not change much in the later fermentation stage. The pectin contents of all samples decreased during 2nd and 4th day of fermentation, then the change was slow. The amount of hemicellulose. cellulose and lignin in terms of the DNF and ADF were varied from 4 to 33%, but the contents of them did not greatly changed during the fermentation. The sensory evaluation showed that both B and C samples had the good score in sweety taste, roasted nutty taste, and the ease of swallowing measured as chewiness. From these results, the optimum soybean-leaf water kimchis can be prepared when 200g soybean-leaf, 1000$m\ell$ water, 15g garlic, 3% red pepper powder and 5 ∼0% wheat flour were fermented at 20$^{\circ}C$ for 2 days.

  • PDF

Studies on the Microstructure of Soybean (Irradiated) During Fermentation (대두(조사)의 발효에 의한 미세구조 변화에 관한 연구)

  • Hur Yun Haeng
    • Journal of environmental and Sanitary engineering
    • /
    • v.1 no.1 s.1
    • /
    • pp.31-40
    • /
    • 1986
  • It was observed by electron microscope (transmission electron microscope, Scanning electron microscope) as a study on microstructure of soybean after r-ray irradiation with the intensity of 5KGY, 7KGY, 10KGY and 15KGY, fermented with the named Bacillus subtilis SCF, which newly separated and identified. According to the progress fermentation, changes of soybean microstructure have been increased, especially irradiated soybeans more increased than non-irradiated them. Observation of microstructure by electron microscope showed that each protein body became more. expanded in the dimension and decomposed, spherosome around the protein body in unit area dispersed and dwindled in the numbers of it. As the fermentation on progress, changes of soybean microstructure were suitable on fermentation period of 7KGY soybean, 48-72hrs fermentation.

  • PDF

Comparison of changes in functional characteristics of fermented soybean with different microbial strains

  • Hyewon Lim;Bosung Kim;Heewon Jung;Sungkwon Park
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.995-1001
    • /
    • 2022
  • The purpose of this study was to compare the effect of solid-state fermentation on soybean using three microbial strains under four different fermentation times. Soybean was fermented for 12, 24, 36 or 48 hours with highly proteolytic microbes, either Bacillus amyloliquefaciens (BA), B. subtilis (BS), or B. subtilis var. natto (BN), and levels of total protein concentration, protein distribution, and antioxidant activity were analyzed. Total protein was highest in the BS 12 h group (9.21 ㎍·µL-1) and lowest in BN 48 h (6.80 ㎍·µL-1), respectively (p < 0.001). Furthermore, three microbes decomposed large molecular weight proteins as well as major allergens of soybean such as β-conglycinin, Gly m Bd 30K, and glycinin. Each treatment group showed the highest degradation rate at 48 h fermentation and among the three microbes, BS showed a relatively higher degradation rate. The radical scavenging ability, known as an indicator of antioxidant activity, showed a significant increase in all treatment groups except BA 24 h. The results from this study suggest that protein concentration, and degradation and antioxidant activity were affected by different types of microbial trains and fermentation period and that B. subtilis fermentation might be the most effective way to increase nutritional and functional properties of soybean.

Production of Bioactive Components and Anti-Oxidative Activity of Soybean Grit Fermented with Bacillus subtilis HA according to Fermentation Time (Bacillus subtilis HA를 이용한 soybean grit의 고체발효 기간에 따른 생리활성물질 생산 및 항산화 효과)

  • Kim, Ji-Eun;Lee, Sam-Pin
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.179-185
    • /
    • 2009
  • Soybean grits, fortified with various bioactive components, were produced by solid-state fermentation using Bacillus subtilis HA. ${\alpha}$-Amylase activity gradually increased during fermentation over 5 days. Fibrinolytic and protease activities were highest in the soybean grits fermented for 7 days. The grits fermented for 5 days also showed the highest tyrosine content, indicating a higher peptide content. Peptides of low molecular weight (below 3,000 daltons) and browning pigments increased with increasing fermentation time. The fermented soybean grits showed higher contents of total phenolic compounds, to approximately 18 mg/g. DPPH free radical scavenging effects were higher in the soybean grits fermented for 3 days. Also, ABTS radical scavenging effects were greater in the fermented grits compared to the unfermented grits. Overall, the soybean grits fermented by solid-state fermentation for 5 days showed enhanced production of bioactive compounds and greater antioxidant properties.