• Title/Summary/Keyword: soy proteins

Search Result 129, Processing Time 0.028 seconds

Allergenicity Change of Soybean Proteins by Thermal Treatment (열처리에 따른 콩 단백질 Allergenicity 변화)

  • Son, Dae-Yeul;Lee, Bo-Ryun;Shon, Dong-Wha;Lee, Kwang-Shin;Ahn, Kang-Mo;Nam, Sung-Yeon;Lee, Sang-Il
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.959-963
    • /
    • 2000
  • Soy bean is one of the most common food material to cause food hypersensitivity reactions in Korea. In this study we have investigated the effect of heating on antigenicity and allergenicity change of soybeans by using immunoblotting and ELISA methods with serum of soybean allergic patients and polyclonal antibody against soybean proteins. Soybean proteins were extracted by one-hour heating in boiling waterbath and separated by SDS-PAGE. After heat treatment, no significant changes of soy protein patterns were observed in SDS-PAGE analysis. Furthermore, the heat treatment had no effect on the results in immunoblotting with polyclonal antibody as well as in ELISA with soybean allergic patients' serum. With these results it may be concluded that allergenicity and antigenicity of soybeans do not reduce by thermal treatment.

  • PDF

Characterization of the Functional Properties of Soy Milk Cake Fermented by Bacillus sp.

  • Oh, Soo-Myung;Kim, Chan-Shick;Lee, Sam-Pin
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.704-709
    • /
    • 2006
  • The mucilage production and tyrosine content in soy milk cake (SMC) fermented by Bacillus firmus NA-1, Bacillus subtilis GT-D, and B. subtilis KU-A was improved by fortification with 10% defatted soybean flour. The fibrinolytic activity and consistency of the SMC were drastically increased by solid-state fermentation for 1 day. However, the consistency of the fermented SMC gradually decreased during fermentation for 3 days. Furthermore, the tyrosine content of the freeze-dried powder of SMC fermented by three Bacillus sp. was 9 times higher than that of unfermented SMC. The soybean proteins, including the 7S and 11S subunits, were partially digested during alkaline fermentation, producing lower molecular-weight peptides. The fibrinolytic enzyme produced in SMC fermented by B. firmus NA-l and B. subtilis KU-A exhibited higher thermal stability than that of B. subtilis GT-D fermentation. The powder obtained from B. subtilis GT-D fermentation had an ${\alpha}$-amylase activity and lower consistency compared to those of B. firmus NA-1 and B. subtilis KU-A. In addition, this powder contained 6.3% moisture content, 27% crude protein content and 9 units of fibrinolytic activity and proteolytic activity.

Effect of Maleylation on Physicochemical Properties of Soybean Glycinin

  • Shin, Weon-Sun;Park, Soo-Jin;Park, Chun-Wuk;Kim, Kang-Sung
    • Macromolecular Research
    • /
    • v.15 no.7
    • /
    • pp.671-675
    • /
    • 2007
  • Soybean proteins appear to harbor a great deal of potential as functional ingredients due to the fact that they are composed of highly bioavailable peptides and amino acids. To develop drink- or gel-type foods formulated with soybean protein, the physicochemical properties of intact and chemically modified soy glycinin were assessed. Maleylation to soy glycinin altered the surface charges of glycinin via the modification of lysine residues, and subsequently generated the dissociation of glycinin subunits owing to the increase in charge repulsion. This modification thus improved the solubility of glycinin, particularly under acidic pH conditions. It is worthy of note that maleylation increased the susceptibility of the basic subunits of mTGase and the formation of a substantial quantity of molecules at a low protein solution concentration. The results of dynamic rheological studies indicated that the 5% intact glycinin progressively formed the gel with mTGase treatment in a concentration-dependent manner, but maleylated-glycinin did not.

Enzyme-linked Immunosorbent Assay for the Detection of Hen's Egg Proteins in Processed Foods

  • Shon, Dong-Hwa;Kim, Hyun-Jung;Kim, Soo-Ho;Kwak, Bo-Yeon
    • Food Science of Animal Resources
    • /
    • v.30 no.1
    • /
    • pp.36-41
    • /
    • 2010
  • The Hen's egg is widely used in many processed foods as an ingredient and is one of the most prevalent food allergens in children. To detect egg proteins in processed foods, we developed a competitive indirect enzyme-linked immunosorbent assay (ciELISA) using an anti-ovomucoid (OM) antibody, which was produced by immunization of rabbits with OM, the most heat-stable component of the egg proteins. The detection limit of this quantitative assay system was 30 ng/mL. Cross-reactivity of the anti-OM antibody toward OM, ovalbumin, skim milk, casein, whey protein isolate, and isolated soy protein was 100, 0.4, 0.2, 0.04, 0, and 0%, respectively. In the spike test of egg white powder in milk replacer, commercial sausage, and in-house sausage, the assay recoveries ($mean{\pm}SD$) were $129{\pm}13.7%$, $73.9{\pm}12.5%$, and $65.5{\pm}13.6%$, respectively. When egg white in a commercial crab meat analog and sausage was determined by ciELISA, the assay recovery was found to be 108% and 127%, respectively. The combined results of this study indicate that this novel ciELISA for OM detection could be applied for the quantification of hen's egg proteins in processed foods.

Changes of Protein Profiles in Cheonggukjang during the Fermentation Period (전통 청국장의 발효 기간 동안 변화하는 수용성 단백질 개요)

  • Santos, Ilyn;Sohn, Il-Young;Choi, Hyun-Soo;Park, Sun-Min;Ryu, Sung-Hee;Kwon, Dae-Young;Park, Cheon-Seok;Kim, Jeong-Hwan;Kim, Jong-Sang;Lim, Jin-Kyu
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.438-446
    • /
    • 2007
  • The fermented soybean product, cheonggukjang, is favored by many people, partly due to its bio-functional ingredients. Since the fermentation process of cheonggukjang is mediated by enzymes, including proteases, produced by microbes, analysis of the proteome profile changes in cheonggukjang during fermentation would provide us with valuable information for fermentation optimization, as well as a better understanding of the formation mechanisms of the bio-functional substances. The soluble proteins from cheonggukjang were prepared by a phenol/chloroform extraction method, in order to remove interfering molecules for high resolution 2-D gel analysis. Proteomic analysis of the cheonggukjang different fermentation periods suggested that most of the soluble soy proteins were degraded into smaller forms within 20hr, and many microbial proteins, such as mucilage proteins, dominated the soluble protein fraction. The proteomic profile of cheonggukjang was very different from natto, in terms of the 2-D gel protein profile. Among the separated protein spots on the 2-D gels, 50 proteins from each gel were analyzed by MALDI-TOF MS and PMF for protein identification. Due to database limitations with regard to soy proteins and microbial proteins, identification of the changed proteins during fermentation was restricted to 9 proteins for cheonggukjang and 15 for natto. From de novo sequencing of the proteins by a tandem MS/MS, as well as by database searches using BLASTP, a limited number of proteins were identified with low reliability. However, the 2-D gel analysis of proteins, including protein preparation methods, remains a valuable tool to analyze complex mixtures of proteins entirely. Also, for intensive mass spectrometric analysis, it is also advisable to focus on a few of the interestingly changed proteins in cheonggukjang.

Defatted Soybean Meal-Based Edible Film Development (탈지 대두박 소재 가식성 생고분자 필름의 개발)

  • Lee, Hanna;Paek, Hee Jeong;Min, Sea Cheol
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.305-310
    • /
    • 2011
  • Edible films were developed from defatted soybean meal (DSM), a byproduct from the soy product industry, investigating the effects of the concentrations of DSM and glycerol and the treatment of high pressure homogenization (HPH) on color, water vapor permeability, and tensile properties of the films. The physical properties of the developed films (DSM films) were compared to those of the films made of soy proteins isolated from the DSM. DSM films were obtained by drying film-forming solutions prepared with DSM powder, glycerol, and water and with and without HPH at 152 MPa. HPH resulted in the formation of continuous and uniform films. Water vapor permeability of the films increased with increase in the concentration of glycerol and decreased by high pressure homogenization. The increase in the glycerol concentration in the film-forming solution prepared without HPH decreased the tensile strength and elastic modulus of the films. However, this effect was not observed with the HPH-treated solution. DSM films possessed higher tensile strength and percentage elongation than the film of soy protein, implying the potential for the DSM film to be applied to food product as an edible film.

Development of non-dairy creamer analogs/mimics for an alternative of infant formula using egg white, yolk, and soy proteins

  • Huang, Xi;Lee, Eun Joo;Ahn, Dong U.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.6
    • /
    • pp.881-890
    • /
    • 2019
  • Objective: A study was conducted to develop non-dairy creamer analogs/mimics using egg white, egg yolk, soy protein and their combinations, and their nutrient content, shelf-life and flavor acceptability were compared. Methods: Spray dried egg white, egg yolk, and soy protein isolate were purchased from manufacturers and used for the formulae. Results: The protein contents of the non-dairy creamer analogs/mimics were about 8.5% as calculated. The amounts of oleic and linoleic acid content increased as the amount of yolk increased in the formula, but the increases of polyunsaturated fatty acids were <0.5% of total fat. Addition of egg yolk to the formula increased choline and lutein content in the products, but the amounts were <0.4 mg/g for choline and $4{\mu}g/g$ for lutein. The lutein in the products continued to decrease over the storage time, and only about 15% to 20% of the 0-month amounts were left after 3 months of storage. Although the thiobarbituric acid reactive substances values of the spray-dried non-dairy creamer analogs/mimics increased as storage time increased, the values were still low. Yellowness, darkness, and egg flavor/odor of the non-dairy creamer analogs/mimics increased as the amount of egg yolk in the formula increased. The overall acceptability of the non-dairy creamer analogs/mimics was closely related to the intensity of egg flavor/odor, but storage improved their overall acceptance because most of the off-odor volatiles disappeared during the storage. Water temperature was the most important parameter in dissolving spray-dried non-dairy creamer analogs/mimics, and $55^{\circ}C$ to $75^{\circ}C$ was the optimal water temperature conditions to dissolve them. Conclusion: Higher amounts of yolk and soy protein combinations in place of egg white reduced the cost of the products significantly and those products contained better and balanced nutrients than the commercial coffee creamers. However, off-flavor and solubility were two important issues in the products.

Effects on Growth and Body Composition to Soy Protein Concentrate as a Fishmeal Replacement in Coho Salmon Oncorhynchus kisutch (은연어(Oncorhynchus kisutch) 사료내 어분 대체원으로서 대두농축단백의 이용에 따른 성장 및 성분분석)

  • Yoo, Gwangyeol;Choi, Wonsuk;Bae, Jinho;Yun, Hyeonho;Lee, Seunghan;Bai, Sungchul C.
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.1
    • /
    • pp.118-123
    • /
    • 2021
  • This study was conducted to evaluate plant proteins as a replacement for a fishmeal diet in the rearing of coho salmon Oncorhynchus kisutch. Twelve groups of 20 fish averaging 34.0±0.62 g were randomly distributed into 12 rectangular tanks (250 L). Four experimental diets included a control diet containing 60% fishmeal (Control), and three other diets that replaced 20% of fishmeal with soy protein concentrate (SPC), fermented soybean protein concentrate (F-SPC), and enzyme-processed soy protein concentrate (E-SPC). At the end of the feeding trial, fish that were fed Control, SPC and E-SPC diets showed significantly higher weight gain, specific growth rate, feed efficiency, and protein efficiency ratio than those that were fed F-SPC diet. However, there were no significant differences among the fish that were fed Control, SPC, and E-SPC diets. No significant differences were observed in crude protein, crude lipid, and ash of whole body among the fish that were fed all the diets. Therefore, these results indicated that 20% of fishmeal could be replaced by E-SPC or SPC without any adverse effects on the growth performance of coho salmon.

Preparation and Chemical Characteristics of Food Protein Hydrolysates (식품단백질 효소분해물의 제조 및 이화학적 특성)

  • Kim, Jong-Hee;Hong, Soon-Kwang
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.19 no.1
    • /
    • pp.45-51
    • /
    • 2009
  • In this study, food protein hydrolysates were prepared from six types of food protein: purified meat protein, whole egg protein, casein, isolated soy protein, concentrated rice protein, and gluten. Food proteins were hydrolyzed with pepsin and ethanol (80%)-soluble fractions of pepsin hydrolysates were employed for analysis. The products were colorless and odorless powders with low fat content and good solubility. The MW (molecular weight) of the protein hydrolysates was confirmed to be $200{\sim}1,800$ via gel filtration. Free amino acid contents accounted for less than 5% of the samples. The results of our amino acid analysis revealed that all food protein hydrolysates preserved their original amino acid compositions and nutritional values of their source proteins with highly pure oligopeptide mixtures. These results show that the food protein hydrolysates prepared in these investigations should prove excellent dietary nitrogen sources for a variety of applications.

  • PDF

Value and utilization of rice protein (쌀단백질의 가치와 이용방법)

  • Jung, Kwangho
    • Food Science and Industry
    • /
    • v.52 no.1
    • /
    • pp.60-67
    • /
    • 2019
  • Protein is a major nutrient of food and has long been studied for nutritional and utility value. Among them, rice protein is attracting attention because of its hypoallergenic characteristics and nutritional value. Rice proteins are divided into endosperm protein and bran protein depending on their location. The two proteins differ in their nutritional characteristics and applications. The endosperm protein is an insoluble protein and has an advantage of digestion and absorption. Rice bran protein dissolves well in water. Its amino acid value is high enough to be comparable to that of soy protein, and it has strong antioxidant ability. Rice protein is a healthy vegetable protein because of its health and hypoallergenic properties. It has been widely used in children's or patients' food, and recently for muscle supplement and health food. Rice protein is considered to be a very effective and useful material as it has been discovered so far.