• Title/Summary/Keyword: southern range

Search Result 536, Processing Time 0.031 seconds

Environmental Interpretation on soil mass movement spot and disaster dangerous site for precautionary measures -in Peong Chang Area- (산사태발생지(山沙汰發生地)와 피해위험지(被害危險地)의 환경학적(環境學的) 해석(解析)과 예방대책(豫防對策) -평창지구(平昌地區)를 중심(中心)으로-)

  • Ma, Sang Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.45 no.1
    • /
    • pp.11-25
    • /
    • 1979
  • There was much mass movement at many different mountain side of Peong Chang area in Kwangwon province by the influence of heavy rainfall through August/4 5, 1979. This study have done with the fact observed through the field survey and the information of the former researchers. The results are as follows; 1. Heavy rainfall area with more than 200mm per day and more than 60mm per hour as maximum rainfall during past 6 years, are distributed in the western side of the connecting line through Hoeng Seong, Weonju, Yeongdong, Muju, Namweon and Suncheon, and of the southern sea side of KeongsangNam-do. The heavy rain fan reason in the above area seems to be influenced by the mouktam range and moving direction of depression. 2. Peak point of heavy rainfall distribution always happen during the night time and seems to cause directly mass movement and serious damage. 3. Soil mass movement in Peongchang break out from the course sandy loam soil of granite group and the clay soil of lime stone and shale. Earth have moved along the surface of both bedrock or also the hardpan in case of the lime stone area. 4. Infiltration seems to be rapid on the both bedrock soil, the former is by the soil texture and the latter is by the crumb structure, high humus content and dense root system in surface soil. 5. Topographic pattern of mass movement spot is mostly the concave slope at the valley head or at the upper part of middle slope which run-off can easily come together from the surrounding slope. Soil profile of mass movement spot has wet soil in the lime stone area and loose or deep soil in the granite area. 6. Dominant slope degree of the soil mass movement site has steep slope, mostly, more than 25 degree and slope position that start mass movement is mostly in the range of the middle slope line to ridge line. 7. Vegetation status of soil mass movement area are mostly fire field agriculture area, it's abandoned grass land, young plantation made on the fire field poor forest of the erosion control site and non forest land composed mainly grass and shrubs. Very rare earth sliding can be found in the big tree stands but mostly from the thin soil site on the un-weatherd bed rock. 8. Dangerous condition of soil mass movement and land sliding seems to be estimated by the several environmental factors, namely, vegetation cover, slope degree, slope shape and position, bed rock and soil profile characteristics etc. 9. House break down are mostly happen on the following site, namely, colluvial cone and fan, talus, foot area of concave slope and small terrace or colluvial soil between valley and at the small river side Dangerous house from mass movement could be interpreted by the aerial photo with reference of the surrounding site condition of house and village in the mountain area 10. As a counter plan for the prevention of mass movement damage the technics of it's risk diagnosis and the field survey should be done, and the mass movement control of prevention should be started with the goverment support as soon as possible. The precautionary measures of house and village protection from mass movement damage should be made and executed and considered the protecting forest making around the house and village. 11. Dangerous or safety of house and village from mass movement and flood damage will be indentified and informed to the village people of mountain area through the forest extension work. 12. Clear cutting activity on the steep granite site, fire field making on the steep slope, house or village construction on the dangerous site and fuel collection in the eroded forest or the steep forest land should be surely prohibited When making the management plan the mass movement, soil erosion and flood problem will be concidered and also included the prevention method of disaster.

  • PDF

The Morphology, Physical and Chemical Characteristics of the Red-Yellow Soils in Korea (우리나라 전토양(田土壤)의 특성(特性) (저구릉(低丘陵), 산록(山麓) 및 대지(臺地)에 분포(分布)된 적황색토(赤黃色土)를 중심(中心)으로))

  • Shin, Yong Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.1
    • /
    • pp.35-52
    • /
    • 1973
  • Red Yellow Soils occur very commonly in Korea and constitute the important upland soils of the country which are either presently being cultivated or are suitable for reclaiming and cultivating. These soils are distributed on rolling, moutain foot slopes, and terraces in the southern and western parts of the central districts of Korea, and are derived from granite, granite gneiss, old alluvium and locally from limestone and shale. This report is a summary of the morphology, physical and chemical characteristics of Red Yellow Soils. The data obtained from detailed soil surveys since 1964 are summarized as follows. 1. Red-Yellows Soils have an A, Bt, C profile. The A horizon is dark colored coarse loamy or fine loamy with the thin layer of organic matter. The B horizon is dominantly strong brown, reddish brown or yellowish red, clayey or fine loamy with clay cutans on the soil peds. The C horizon varies with parent materials, and is coarser texture and has a less developed structure than the Bt horizon. Soil depth, varied with relief and parent materials, is predominantly around 100cm. 2. In the physical characteristics, the clay content of surface soil is 18 to 35 percent, and of subsoil is 30 to 90 percent nearly two times higher than the surface soil. Bulk density is 1.2 to 1.3 in the surface soil and 1.3 to 1.5 in the subsoil. The range of 3-phase is mostly narrow with 45 to 50 percent in solid phase, 30 to 45 percent in liquid one, and 5 to 25 percent in gaseous state in the surface soil; and 50 to 60 solid, 35 to 45 percent liquid and less than 15 percent gaseous in the subsoil. Available soil moisture capacity ranges from 10 to 23 percent in the surface soil, and 5 to 16 percent in the subsoil. 3. Chemically, soil reaction is neutral to alkaline in soils derived from limestone or old fluviomarine deposits, and acid to strong acid in other ones. The organic matter content of surface soil varying considerably with vegetation, erosion and cultivation, ranges from 1.0 to 5.0 percent. The cation exchange capacity is 5 to 40 me/100gr soil and closely related to the content of organic matter, clay and silt. Base saturation is low, on the whole, due to the leaching of extractable cations, but is high in soils derived from limestone with high content of lime and magnesium. 4. Most of these soils mainly contain halloysite (a part of kaolin minerals), vermiculite (weathered mica), and illite, including small amount of chlorite, gibbsite, hematite, quartz and feldspar. 5. Characteristically they are similar to Red Yellow Podzolic Soils and a part of Reddish Brown Lateritic Soils of the United States, and Red Yellow Soils of Japan. According to USDA 7th Approximation, they can be classified as Udu Its or Udalfs, and in FAO classification system to Acrisols, Luvisols, and Nitosols.

  • PDF

K-Ar and $^{40}$ Ar/$^{39}$ Ar Ages from Metasediments in the Okcheon Metamorphic Belt and their Tectonic Implication (옥천 변성대 변성퇴적암의 K-Ar및 $^{40}$ Ar/$^{39}$ Ar 연대와 그 의의)

  • 김성원;오창환;이덕수;이정후
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.79-99
    • /
    • 2003
  • Muscovite and biotite from 52 metasediments and 5 granites in the Hwasan area, the southwest of the Okcheon metamorphic belt and the Miwon-Jeungpyeong area, central Okcheon metamorphic belt were dated by the K-Ar and $^{40}$ Ar/$^{39}$ Ar methods. Muscovite and biotite ages from metapelitic and psammitic rocks (metasediments) of the Boeun and Pibanryeong units in the Hwasan area are concentrated in the mid-Jurassic (149-180 Ma). K-Ar and $^{40}$ Ar/$^{39}$ Ar ages for metapelitic and psammitic rocks of the Boeun and Pibanryeong units in the Miwon-Jeungpyeong area show complicated age distribution. Muscovite and biotite ages are classified by three groups, 142-194 Ma, 216-234 Ma, and 241-277 Ma. Younger (Cretaceous) ages occur only in metasediments close to Cretaceous granitic rocks in the southeastern region and the older ages of 216-277 Ma are restricted to the middle Part of the Jeungpyeong area. Most ages in the other area of the central Okcheon metamorphic belt fall between 142-194 Ma (Jurassic). K-Ar and $^{40}$ Ar/$^{39}$ Ar ages for granite from the northern part in the both the southwest and central Okcheon metamorphic belt also gave middle Jurassic ages (156-168 Ma). The similar ages from both metasediments and granites in the study areas indicate simultaneous cooling of both rocks to 300-350$^{\circ}C$ during the middle Jurassic. The state of graphitization of carbonaceous material of all metasediments in the study areas Indicates fully ordered graphite falling within a small range, from 3.353 to 3.359 ${\AA}$, which indicate amphibolite facies regional metamorphism. In the southern sector of the Boeun unit from the Hwasan area, metamorphic grade indicated by mineral paragenesis during regional intermediate-P/T metamorphism is greenschist facies. Whereas, the $d_{002}$ values for carbonaceous materials in the same sector show fully ordered graphite (ca. 500$^{\circ}C$) indicating amphibolite facies. This result with the concentration of mica ages of metasediments into the middle Jurassic, the presence of low-P/T thermal metamorphic zone (>500$^{\circ}C$) in the metasediments close to the Jurassic granite and the regional intrusion of Jurassic granites and their middle Jurassic intrusion and cooling ages may indicate the low-P/T regional thermal event during the early(\ulcorner)-middle Jurassic after main intermediate-P/T metamorphism which formed main mineral assemblage regionally in the study area. The regional thermal event failed, however, to reset the mineral assemblage of regional intermediate-P/T metamorphism except for narrow aureole (1-2 km) around Jurassic granite because e duration of thermal effect was relatively short by repid cooling of the Jurassic granite. In the middle part of the Jeungpyeong area, central Ogcheon metamorphic belt, muscovite and biotite K-Ar ages from 5 samples are 263-277 Ma and 241-249 Ma, respectively. An intermediate-P/T metamorphism is currently accepted to have occurred between 280 and 300 Ma. Therefore, the muscovite and biotite ages can be interpreted as cooling ages after Ml metamorphism indicating rapid cooling to ca 350$^{\circ}C$ between 280-300 Ma and 263-271 Ma, and biotite ages indicate slower cooling to ca. 300$^{\circ}C$ between 263-277 Ma and 241-249 Ma. However, more detail study is needed to confirm why the Permian to Triassic ages occur only in the middle Part of the Jeungpyeong area.a.

Characteristics and Distribution Pattern of Carbonate Rock Resources in Kangwon Area: The Gabsan Formation around the Mt. Gachang Area, Chungbuk, Korea (강원 지역에 분포하는 석회석 자원의 특성과 부존환경: 충북 가창산 지역의 갑산층을 중심으로)

  • Park, Soo-In;Lee, Hee-Kwon;Lee, Sang-Hun
    • Journal of the Korean earth science society
    • /
    • v.21 no.4
    • /
    • pp.437-448
    • /
    • 2000
  • The Middle Carboniferous Gabsan Formation is distributed in the Cheongrim area of southern Yeongwol and the Mt. Gachang area of Chungbuk Province. This study was carried out to investigate the lithological characters and geochemical composition of the limestones and to find out controlling structures of the limestones of the formation. The limestones of the Gabsan Formation are characterized by the light gray to light brown in color and fine and dense textures. The limestone grains are composed of crinoid fragments, small foraminfers, fusulinids, gastropods, ostracods, etc. Due to the recrystallization, some limestones consist of fine crystalline calcites. The chemical analysis of limestones of the formation was conducted to find out the contents of CaO, MgO, Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$. The content of CaO ranges from 49.78-60.63% and the content of MgO ranges from 0.74 to 4.63% The contents of Al$_2$O$_3$ and Fe$_2$O$_3$ are 0.02-0.55% and 0.02${\sim}$0.84% , respectively. The content of SiO$_2$ varies from 1.55 to 4.80%, but some samples contain more than 6.0%. The limestones of the formation can be grouped into two according to the CaO content: One is a group of which CaO content ranges from 49.78 to 56.26% and the other is a group of which CaO content varies from 59.36 to 60.38%. In the first group, the contents of Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$ range very irregularly according to the CaO content. In the second group, the values of MgO, Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$ are nearly same. Detailed structural analysis of mesoscopic structures and microstructures indicates the five phase of deformation in the study area. The first phase of deformation(D$_1$) is characterized by regional scale isoclinal folds, and bedding parallel S$_1$ axial plane foliation which is locally developed in the mudstone and sandstone. Based on the observations of microstructures, S$_1$ foliations appear to be developed by grain preferred orientation accompanying pressure-solution. During second phase of deformation, outcrop scale E-W trending folds with associated foliations and lineations are developed. Microstructural observations indicate that crenulation foliations were formed by pressure-solution, grain boundary sliding and grain rotation. NNW and SSE trending outcrop scale folds, axial plane foliations, crenulation foliations, crenulation lineations, intersection lineations are developed during the third phase of deformation. On the microscale F$_3$ fold, axial plane foliations which are formed by pressure solution are well developed. Fourth phase of deformation is characterized by map scale NNW trending folds. The pre-existing planar and linear structures are reoriented by F$_4$ folds. Fifth phase of deformation developed joints and faults. The distribution pattern of the limestones is mostly controlled by F$_1$ and F$_4$ folds.

  • PDF

A Study on the Natural Landscape System and Space Organization of Musudong Village's Yuhoidang Garden(Hageohwon) (무수동 유회당 원림(하거원(何去園))의 산수체계와 공간구성)

  • Shin, Sang-Sup;Kim, Hyun-Wuk;Kang, Hyun-Min
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.29 no.3
    • /
    • pp.106-115
    • /
    • 2011
  • This study, based on (edited in 18th century), analysed the landscape system and cultural landscape elements of Yuhoidang(Hageowon 何去園) Garden in Musu-dong, Daejeon, and the findings are as in the following. YuHoidang(Gwon Yijin 權以鎭) managed Hageowon Garden in Musu-dong, located on the southern branch of Mt. Bomun, to realize his utopia. The completion of Hageowon Garden was only possible due to his installation of a variety of facilities in family gravesite on the hill behind his house: Shimyoso(Samgeunjeongsa 三近精舍, in 1707), Naboji(納汚池, in 1713), Banhwanwon(in 1714) and expended exterior space(in 1727). With regard to the landscape system of the village, the main range of mountains consists of Mt. Daedun, Mt. Odae and Mt. Bomun. The main high mountain of the three is Mt. Bomun, where 'Blue Dragon' hill branches off on the east side(Eungbong), 'White Tiger' in the west(Cheongeun and Sajeong) and Ansan(inner mountain) in the south. The landscape system is featured by 'mountains in back and rivers in front'. The river in the south-west, with its source in Mt. Juryun is called as the 'Stream of outer perfect spot', while the 'Stream of inner perfect spot' rises from Eungbong, passing through the east part of the village into the south-western direction. Banhwanwon Garden(盤桓園) was created with the stream in the east and natural bedrocks, and its landscape elements includes Naboji, Hwalsudam, Gosudae, Sumi Waterfall, Dogyeong(path of peach trees), Odeeokdae(platform with persimmon trees), Maeryong(Japanese apricot tree), springs and observatories. An expanded version of Banhwanwon was Hageowon garden, where a series of 'water-trees-stone' including streams, four ponds, five observation platforms, three bamboo forests and Chukgyeongwon(縮景園) of an artificial hill gives the origin forest a scenic atmosphere. When it comes to semantics landscape elements, there are (1) Yuhoidang to cherish the memory of a deceased parents, (2) Naboji for family unification, (3) Gosudae to keep fidelity, (4) Odeokdae to collect virtue and wisdom, (5) Sumi Waterfall to aspire to be a man of noble character, (6) Yocheondae for auspicious life, (7) Sumanheon and Gigungjae to be in pursuit of hermitic life, (8) Hwalsudam for development of family and study, (9) Mongjeong to repay favor of ancestors, (10) Seokgasan, a symbol of secluded life, (11) Hageowon to enjoy guarding graves in retired life. The spatial composition of Hageowon was realized through (1) Yuhoidang's inside gardens(Naboji, Jucheondang, Odeokdae, Dogyeong, Back yard garden and others) (2) Sumanheon(收漫軒) Byeolup or Yuhoidang's back yard gardens (Seokyeonji, Yocheondae, Sumanheon, Baegyeongdae, Amseokwon and others) (3) Chukgyeongwon of the artificial hill(which is also the east garden of Sumanheon, being composed of Hwalsudam, Sumi Waterfall and Gasan or 12 mountaintops) (4) the scenic spots for unifying Confucianism, Buddhism and Taoism are Cemetry garden in the back hill of the village, the temple of Yeogyeongam, Sansinkak(ancestral ritual place of folk religion) and Geoeopjae(family school). On top of that, Chagyeongwon Garden(借景園) commands a panoramic distant view of nature's changing beauty through the seasons.

Musical Analysis of Jindo Dasiraegi music for the Scene of Performing Arts Contents (연희현장에서의 올바른 활용을 위한 진도다시래기 음악분석)

  • Han, Seung Seok;Nam, Cho Long
    • (The) Research of the performance art and culture
    • /
    • no.25
    • /
    • pp.253-289
    • /
    • 2012
  • Dasiraegi is a traditional funeral rite performance of Jindo located in the South Jeolla Province of South Korea. With its unique stylistic structure including various dances, songs and witty dialogues, and a storyline depicting the birth of a new life in the wake of death, embodying the Buddhism belief that life and death is interconnected; it attracted great interest from performance organizers and performers who were desperately seeking new contents that can be put on stage as a performance. It is needless to say previous research on Dasiraegi had been most valuable in its recreation as it analyzed the performance from a wide range of perspectives. Despite its contributions, the previous researches were mainly academic focusing on: the symbolic meanings of the performance, basic introduction to the components of the performance such as script, lyrics, witty dialogue, appearance (costume and make-up), stage properties, rhythm, dance and etc., lacking accurate representation of the most crucial element of the performance which is sori (song). For this reason, the study analyzes the music of Dasiraegi and presents its musical characteristics along with its scores to provide practical support for performers who are active in the field. Out of all the numbers in Dasiraegi, this study analyzed all of Geosa-nori and Sadang-nori, the funeral dirge (mourning chant) sung as the performers come on stage and Gasangjae-nori, because among the five proceedings of the funeral rite they were the most commonly performed. There are a plethora of performance recordings to choose from, however, this study chose Jindo Dasiraegi, an album released by E&E Media. The album offers high quality recordings of performances, but more importantly, it is easy to obtain and utilize for performers who want to learn the Dasiraegi based on the script provided in this study. The musical analysis discovered a number of interesting findings. Firstly, most of the songs in Dasiraegi use a typical Yukjabaegi-tori which applies the Mi scale frequently containing cut-off (breaking) sounds. Although, Southern Kyoung-tori which applies the Sol scale was used, it was only in limited parts and was musically incomplete. Secondly, there was no musical affinity between Ssitgim-gut and Dasiraegi albeit both are for funeral rites. The fundamental difference in character and function of Ssitgim-gut and Dasiraegi may be the reason behind this lack of affinity, as Ssitgim-gut is sung to guide the deceased to heaven by comforting him/her, whereas, Dasiaregi is sung to reinvigorate the lives of the living. Lastly, traces of musical grammar found in Pansori are present in the earlier part of Dasiraegi. This may be attributed to the master artist (Designee of Important Intangible Cultural Heritage), who was instrumental in the restoration and hand-down of Dasiaregi, and his experience in a Changgeuk company. The performer's experience with Changgeuk may have induced the alterations in Dasiraegi, causing it to deviate from its original form. On the other hand, it expanded the performative bais by enhancing the performance aspect of Dasiraegi allowing it to be utilized as contents for Performing Arts. It would be meaningful to see this study utilized to benefit future performance artists, taking Dasiraegi as their inspiration, which overcomes the loss of death and invigorates the vibrancy of life.