• Title/Summary/Keyword: south-west regions

Search Result 123, Processing Time 0.024 seconds

Expected Segmentation of the Chugaryung Fault System Estimated by the Gravity Field Interpretation (추가령단층대의 중력장 데이터 해석)

  • Choi, Sungchan;Choi, Eun-Kyeong;Kim, Sung-Wook;Lee, Young-Cheol
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.743-752
    • /
    • 2021
  • The three-dimensional distribution of the fault was evaluated using gravity field interpretation such as curvature analysis and Euler deconvolution in the Seoul-Gyeonggi region where the Chugaryeong fault zone was developed. In addition, earthquakes that occurred after 2000 and the location of faults were compared. In Bouguer anomaly of Chugaryeong faults, the Pocheon Fault is an approximately 100 km fault that is extended from the northern part of Gyeonggi Province to the west coast through the central part of Seoul. Considering the frequency of epicenters is high, there is a possibility of an active fault. The Wangsukcheon Fault is divided into the northeast and southwest parts of Seoul, but it shows that the fault is connected underground in the bouguer anomaly. The magnitude 3.0 earthquake that occurred in Siheung city in 2010 occurred in an anticipated fault (aF) that developed in the north-south direction. In the western region of the Dongducheon Fault (≒5,500 m), the density boundary of the rock mass is deeper than that in the eastern region (≒4,000 m), suggesting that the tectonic movements of the western and eastern regions of the Dongducheon Fault is different. The maximum depth of the fracture zone developed in the Dongducheon Fault is about 6,500 m, and it is the deepest in the research area. It is estimated that the fracture zone extends to a depth of about 6,000 m for the Pocheon Fault, about 5,000 m for the Wangsukcheon Fault, and about 6,000 m for the Gyeonggang Fault.

The Heading Response and Regional Adaptability of Rice Varieties under the Temperature and Day-Length Conditions of Major Rice Production Areas in North Korea (북한 주요 벼 재배지역의 기온과 일장 환경에서 품종의 출수 반응과 지역 적응성 분석)

  • Woonho Yang;Shingu Kang;Jong-Seo Choi;Dae-Woo Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.222-233
    • /
    • 2022
  • The heading responses of rice varieties that originated from South Korea, North Korea, and northern China were examined under the temperature and day-length conditions of 13 major rice production areas in North Korea. Kenjiandao3 and Nongdae3 originated from China, Olbyeo1, Olbyeo2 and Sonbong9 from North Korea, and Joun from South Korea demonstrated the earliest heading stage depending on the regional environment. Out of 40 rice varieties, 34 reached the heading stage within the regional safe marginal heading date (SMHD) under Haeju and Sariwon environmental conditions, while 16 to 17 varieties reached the heading stage under Wonsan, Changjon, Supung, and Yongyon environmental conditions. Some middle and mid-late maturing varieties that originated from South Korea reached the heading stage within the SMHD under the temperature and day-length conditions of Kaesong, Haeju, Sariwon, Nampo, and Pyongyang that are located in the west-southern plain. The majority of early maturing varieties, but not the middle or mid-late ones, reached the heading stage within the SMHD under the environmental conditions of Singye, Anju, Kusong, and Sinuiju. Only a few early maturing varieties demonstrated the heading stage within the SMHD under Yongyon, Changjon, and Wonsan environments. The number of days to heading was highly positively correlated among all regions; however, it was not consistent among the rice varieties. The 40 rice varieties that had been tested were classified into seven groups according to their heading responses to the temperature and day-length variations of the 13 regional conditions at 65% similarity level in cluster analysis.

Classification of Cultivation Region for Soybean (Glycine max [L.]) in South Korea Based on 30 Years of Weather Indices (평년기상을 활용한 우리나라의 콩 재배지역 구분)

  • Dong-Kyung Yoon;Jaesung Park;Jinhee Seo;Okjae Won;Man-Soo Choi;Hyeon Su Lee;Chaewon Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.1
    • /
    • pp.49-60
    • /
    • 2024
  • A region can be divided into cultivation zones based on homogeneity in weather variables that have the greatest influence on crop growth and yield. This study classified the cultivation zone of soybean using weather indices as a prior study to classify the agroclimatic zone of soybean. Meteorological factors affecting soybeans were determined through correlation analysis over a 10 year period (from 2013 to 2022) using data from the Miryang and Suwon regions collected from the soybean yield trial database of the Rural Development Administration, Korea and the meteorological database of the Korea Meteorological Administration. The correlation between growth characteristics and the minimum temperature, daily temperature range, and precipitation were high during the vegetative growth stages. Moreover, the correlation between yield components and the maximum temperature, daily temperature range, and precipitation were high during the reproductive growth stages. As a result of k-means clustering, soybean cultivation zones were divided into three zones. Zone 1 was the central inland region and southern Gyeonggi-do; Zone 2 was the southern part of the west coast, the southern part of the east coast, and the South Sea; and Zone 3 included parts of eastern Gyeonggi-do, Gangwon-do, and areas with high altitudes. Zone 1, which has a wide latitude range, was further subdivided into three cultivation zones. The results of this study may provide useful information for estimating agrometeorological characteristics and predicting the success of soybean cultivation in South Korea.

The Incidence and Distribution of Viral Diseases in Barley Fields in Korea (국내 맥류재배지의 바이러스병 발생과 분포)

  • Park, Jong-Chul;Seo, Jae-Hwan;Choi, Min-Kyung;Lee, Kui-Jae;Kim, Hyung-Moo
    • Research in Plant Disease
    • /
    • v.10 no.3
    • /
    • pp.188-193
    • /
    • 2004
  • The symptom expressions such as yellowish and mosaic spots in overwintering barley have been considered to be a damage by cold or water. However, it had revealed that the symptom expressions were caused by viruses throughout three year nationwide surveys. Barley yellow mosaic virus (BaYMV), Barley mild mosaic virus (BaMMV), and Soil-borne wheat mosaic virus (SBWMV) was detected in 2001-2003 and Barley yellow dwarf virus-MA V (BYDV -MA V) from field samples collected on March in 2003. The results of investigation showed that the incidence of BaYMV was more than 70% and that of BaMMV and SBWMV was 15.7-37.4% and 0.7-10.1 % in three year surveys, respectively. The incidence of BYDV-MAV was approximately 1 % in 2003 only. The distribution of BaYMV was relatively uniform throughout barley fields in Korea, but the incidence of the virus in Gyunggi Province was as low as 19% compared to 65-85% in the rest of regions. On the other hand, 70% of BaMMV was found to be in the west south regions of Korea, Jeonbuk and Jeonnam Provinces. Taken together, both BaYMV and BaMMV were thought to be dominant casual agents in overwintering barley by either single or mixed infections. Previous survey data for BaYMV from 1994 to 1996 indicated that the incidence of the virus was approximately 40% in Jeonbuk, Jeonnam, and Gyungnam Provinces. Thus, comparing with the results from the recent nationwide survey, the incidence of BaYMV had been rapidly increasing in overwintering barley fields in the southern part of Korea.

Prioritizing Noxious Liquid Substances (NLS) for Preparedness Against Potential Spill Incidents in Korean Coastal Waters (해상 유해액체물질(NLS) 유출사고대비 물질군 선정에 관한 연구)

  • Kim, Young-Ryun;Choi, Jeong-Yun;Son, Min-Ho;Oh, Sangwoo;Lee, Moonjin;Lee, Sangjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.846-853
    • /
    • 2016
  • This study prioritizes Noxious Liquid Substances (NLS) transported by sea via a risk-based database containing 596 chemicals to prepare against NLS incidents. There were 158 chemicals transported in Korean waters during 2014 and 2015, which were prioritized, and then chemicals were grouped into four categories (with rankings of 0-3) based on measures for preparedness against incident. In order to establish an effective preparedness system against NLS spill incidents on a national scale, a compiling process for NLS chemicals ranked 2~3 should be carried out and managed together with an initiative for NLS chemicals ranked 0-1. Also, it is advisable to manage NLS chemicals ranked 0-1 after considering the characteristics of NLS specifically transported through a given port since the types and characteristics of NLS chemicals relevant differ depending on the port. In addition, three designated regions are suggested: 1) the southern sector of the East Sea (Ulsan and Busan); 2) the central sector of the South Sea (Gwangyang and Yeosu); and 3) the northern sector of the West Sea (Pyeongtaek, Daesan and Incheon). These regions should be considered special management sectors, with strengthened surveillance and the equipment, materials and chemicals used for pollution response management schemes prepared in advance at NLS spill incident response facilities. In the near future, the risk database should be supplemented with specific information on chronic toxicity and updated on a regular basis. Furthermore, scientific ecotoxicological data for marine organisms should be collated and expanded in a systematic way. A system allowing for the identification Hazardous and Noxious Substances (HNS) should also be established, noting the relevant volumes transported in Korean waters as soon as possible to allow for better management of HNS spill incidents at sea.

Synoptic Analysis on the Trend of Northward Movement of Tropical Cyclone with Maximum Intensity (최대 강도 태풍의 북상 경향에 대한 종관분석)

  • Choi, Ki-Seon;Park, Ki-Jun;Kim, Jeoung-Yun;Kim, Baek-Jo
    • Journal of the Korean earth science society
    • /
    • v.36 no.2
    • /
    • pp.171-180
    • /
    • 2015
  • Regarding the tropical cyclone (TC) genesis frequency, TCs between 1999 and 2013 were generated more frequently in the northwest waters of the tropical- and subtropical western North Pacific than TCs between 1977 and 1998. TCs over the period from 1977-1998 showed a northward track trend generated mostly from the distant sea in east of the Philippines via the mainland of the Philippines and the South China Sea to the west toward Indochina or from the distant sea in east of the Philippines to the distance sea in east of Japan. TCS over the period from 1999-2013 showed a northward shift pattern to the mid-latitude region mostly in East Asia. Therefore, TCs over the period from 1999-2013 tended to move to much higher latitudes than TCs over the period from 1977-1998, which also resulted in the high possibility of maximum TC intensity occurred in higher latitudes during the former period than the latter period. In the difference of 500 hPa streamline between two periods, the anomalous anticyclonic circulations were strengthened in $30-50^{\circ}N$ whereas the anomalous monsoon trough was placed in north of the South China Sea, which was extended to the east up to $145^{\circ}E$. The mid-latitude in East Asia is affected by the anomalous southeasterlies due to the above anomalous anticyclonic circulations and anomalous monsoon trough. The anomalous southeasterlies play a role in anomalous steering flows that directed TCs to the mid-latitude regions in East Asia, which made the latitudes of the maximum intensities in TCs over the period from 1999 - 2013 further to the north than those in TCs over the period from 1977-1998.

Studies on the Distribution of Fisheries Resources by Bottom Trawling in the Yellow Sea (트롤조사에 의한 황해 주요 어족생물의 분포특성에 관한 연구)

  • 신형호;황두진;김용주
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.2
    • /
    • pp.129-139
    • /
    • 2002
  • Fish distribution characteristics are essential to assess and estimate fisheries resources in a particular area. The primary goal of this study is to determine the distribution characteristics by the bottom trawling in the Yellow Sea west of South Korea. The surveys were carried out between 33$^{\circ}$00'N~37$^{\circ}$00'N latitude and 124$^{\circ}$00'E~126$^{\circ}$00'E longitude at EEZ(Exclusive Economic Zone) of Korea in Yellow Sea on May and August, 1999 and April, 2000. The ships used in this survey were the R/V Chung-kyeong(G/T 300) and R/V Dong-baek(G/T 1,050) of Yeosu National University. The results obtained can be summarized as follows 1. From the trawl data the fisheries resources are seriously decreasing through most of the species(about more 50%) have been appeared only one time at the bottom trawl on April, 2000. The total fish species caught by the trawl net during the 3 times survey were 106 species and a few species(dominant species) of these occupied 50~90% of the quantity of the total quantity by number or by weight. Among the dominant species the tanaka's snailfish was recorded to be the most dominant species in the survey area. The fish species in the Yellow Sea were clustered according to the regions. They clustered in two or three partes to the south-north direction in the spring season and clustered in two parts to the on-off shore direction of the shore in the summer season. Most of the fish caught at the the trawl net with cover-net(30.3mm) were small sized. They were shorter than 15 cm in length and the extruding rate of the cod-end which was 60mm mesh size ranges about 90%. 2. The densities of the number and weight per unit volume derived from the total catches sampled in April, 2000 survey were $1532.2{\times}10^{-6}fish/m^3$ and $39.55{\times}10^{-6}kg/m^3$, respectively. 3. The density variation of fish population between 1999 and 2000 showed a slight tendency to increase.

Distribution of Salinity and Temperature due to the Freshwater Discharge in the Yeongsan Estuary in the Summer of 201 (2010년 여름 담수방류에 의한 영산강 하구의 염분 및 수온 분포 변화)

  • Park, Hyo-Bong;Kang, Kiryong;Lee, Guan-Hong;Shin, Hyun-Jung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.3
    • /
    • pp.139-148
    • /
    • 2012
  • The short-term variation of salinity and temperature in a dyked estuarine environment is mainly controlled by the freshwater discharge from the dyke. We examined the distribution of salinity and temperature by the freshwater discharge in the Yeongsan River estuary using the CTD data obtained from 8 stations through three surveys in June (weak discharge) and August (intensive discharge), 2010. During the weak discharge in June, the surface salinity showed 30-32.5 psu and its horizontal gradient was relatively high around Goha-do (0.25~0.32 psu/km). On the other hand, the salinity of the bottom layer was almost constant in the range of 33 psu. Water temperature ranged $19{\sim}21^{\circ}C$ and displayed higher gradient in north-south direction than the gradient of east-west direction. During the intensive freshwater discharge on August 12, the salinity dropped to 9~26 psu. The maximum horizontal gradient of surface salinity reached 3.8 psu/km in the north of Goha-do where the strong salinity front was formed, and the horizontal salinity gradient of bottom layer was 0.28 psu/km. The horizontal gradient of water temperature was $-0.45^{\circ}C/km$ in the surface and $-0.12^{\circ}C/km$ in the bottom with high surface temperature near the dyke and decreasing gradually to the river mouth. After 3 days of the intensive discharge ($3^{rd}$ survey), the surface salinity increased to 22~26 psu. However, there still existed relatively high horizontal gradient around Goha-do. In the mean time, the bottom salinity decreased to 26.5~27.5 psu, but its gradient was not big as much as the surface gradient. According to time series of CTD profile near the dyke, the discharged fresh water jetted down temporarily and then recovered gradually with the recovering speed of 0.4 m/hour for the discharge case of $13{\times}10^6$ ton. Due to the combined effects of freshwater discharge and surface heating during the summer of 2010, the Yeongsan estuary, in general, underwent intensified vertical stratification, which in turn caused the inhibition of vertical mixing, especially inside area of estuary. Based on the spatial distribution of salinity and temperature, the Yeongsan estuary can be divided into three regions: the Goha-do area with strong horizontal gradient of salinity and temperature, inner estuary from Goha-do to the dyke with low salinity, and outer estuary from Goha-do to the coasts with relatively high salinity.

Seasonal sea Level oscillations in the East Sea (Sea of Japan) (동해 해수면의 계절적인 변동에 대하여)

  • OH, IM SANG;RABINOVICH, ALEXANDER B.;PARK, MYOUNG SOOK;MANSUROV, ROALD N.
    • 한국해양학회지
    • /
    • v.28 no.1
    • /
    • pp.1-16
    • /
    • 1993
  • The monthly mean sea levels at 48 stations located at the East and Yellow Seas coasts of Korea, Russia and Japan are processed to investigate seasonal sea level variations. The strong seasonal variations are found to be at the west coast of Korea (42.1 cm in Kunsan), in the region of the Korea strait and near the southern part of Primorye (30-33 cm); the weak ones near the southwestern coast of the Sakhalin Island (10-12 cm). Practically for the whole study area except the southwest Sakhalin, the general picture of the seasonal sea level changes is alike: the mean sea level rises in summer-autumn and falls in winter-spring. The spectral analysis of the records also shows that the seasonal oscillations strongly dominate in the sea level variations, more than 80% or total energy in the southern part of the investigated region and 50-70% in the northern part relate to these oscillations. The annal peak significantly prevails in spectra of the monthly sea levels for the majority of stations, the semiannual peak is also well manifested, but the seasonal peaks of higher order (corresponding to the periods of four and three months) reveal only at some records. The maximal amplitudes of annual component by a least square method are found at the Yellow Sea coast of Korea (20-21 cm) and also near the Japanese coast of the korea Strait (19-19 cm). The semiannual component has the maximal amplitudes (3-4 cm) near the south and southwestern coasts of the Sakhalin Island. The annual range of the sea levels is much weaker here than in the other regions, the relative investment of the seasonal oscillations in total energetic budget is only 35-40%, annual ($A_1$) and semiannual ($A_2$) components have nearly the same amplitude (seasonal factor $F=A_1/A_2=0.9-1.2$). On the basis of the present examination on sea level changes together with the results of Tomizawa et. al.(1984) the whole investigated area may be divided into 10 subregions, 2 of them are related to the Yellow Sea and Western part of the Korea Strait (Y1, Y2), the other ones (E1-E8) to the East Sea.

  • PDF

Interdecadal Variation of Tropical Cyclone Genesis Frequency over the Western North Pacific (북서태평양에서 열대 저기압 발생빈도의 십년간 변동 특성)

  • Choi, Ki-Seon;Kim, Baek-Jo;Lee, Seong-Lo;Park, Jong-Kil
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.6
    • /
    • pp.31-39
    • /
    • 2009
  • This study has found that there is a reverse phase with interdecadal variation in temporal variations of tropical cyclone (TC) genesis frequency (TCGF) between Northwest sector and Southeast sector, based on climatological mean tropical cyclone genesis location over the western North Pacific. The TCGF in the Northwest sector has been increased since the mid 1980s (1986-2005), while TCGF in the Southeast sector was higher until the early 1970s (1951-1970). The analysis of a difference between 1986-2005 and 1951-1970 showed results as follows: i) Through the analysis of vertical wind shear (VWS) and sea surface temperature (SST), less VWS and higher SST in the former (latter) period was located in the Northwest (Southeast) sector. ii) In the analysis of TC passage frequency (TCPF), TCs occurred in the Northwest sector frequently passed from east sea of the Philippines, through East China Sea, to Korea and Japan in the latter period, while TCs in the former period frequently has a lot of influences on South China Sea (SCS). In the case of TCs occurred in the Southeast sector, TCs in the west (east), based on $150^{\circ}E$ had a high passage frequency in the latter (former) period. In particular, TCs during the latter period frequently moved toward from the east sea of the Philippines to SCS and southern China. iii) This difference of TCPF between the two periods was characterized by 500 hPa anomalous pressure pattern. Particularly, anomalous cyclonic circulation strengthened over the East Asian continent caused anomalous southerlies along the East Asian coast line from the east sea of the Philippines to be predominate. These anomalous winds served as steering flows that TC can easily move toward same regions.