• Title/Summary/Keyword: source identification

Search Result 808, Processing Time 0.027 seconds

Acoustic Source Models for MUSIC to Identifying Near Field Source (근거리 음원 탐지를 위한 MUSIC용 음원 모델)

  • 최재웅;김양한
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.54-60
    • /
    • 2000
  • Acoustic source localization using MUSIC etc. utilizes the propagation model in the medium. A plane wave model is a well-known source model for the identification of distant sources in the SONAR and a monopole source model becomes the one for the identification of rather near range sources. This paper introduces a dipole source model and a tripole source model consisting of one monopole and one dipole source. The simplifying procedures provide the simplified factors rather than the superposition of the relating monopole sources. The simulations show that the tripole model is useful in the general case including pure monopole, pure dipole, or pure quadrupole source identification.

  • PDF

Vibration Source Signal Identification of Structures Using ICA (ICA 기법을 이용한 구조물의 진동원 신호 규명)

  • Kim, Kookhyun;Kwon, Hyuk-Min;Cho, Dae-Seung;Kim, Jae-Ho;Jun, Jae-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.6
    • /
    • pp.498-503
    • /
    • 2012
  • Independent component analysis (ICA) technique based on statistical independency of the signals is known as suitable to identify the source signals by measuring and separating mixed signals through transfer paths and has successfully applied in the field of medical care, communications and so forth. In this study, the ICA technique is introduced for the identification of excitation sources from measured vibration signals of structures, which can be done by evaluating negentropy of centered and whitened vibration signals and correlation of separated signals. To validate the method, numerical analyses are carried out for a plate and a cylinder structure. The results show that the method can be applied efficiently to source identification of complex structures. Nevertheless, additional studies would be required to complement problems of occasional inaccuracy.

Output only system identification using complex wavelet modified second order blind identification method - A time-frequency domain approach

  • Huang, Chaojun;Nagarajaiah, Satish
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.369-378
    • /
    • 2021
  • This paper reviewed a few output-only system identification algorithms and identified the shortcomings of those popular blind source separation methods. To address the issues such as less sensors than the targeted modal modes (under-determinate problem), repeated natural frequencies as well as systems with complex mode shapes, this paper proposed a complex wavelet modified second order blind identification method (CWMSOBI) by transforming the time domain problem into time-frequency domain. The wavelet coefficients with different dominant frequencies can be used to address the under-determinate problem, while complex mode shapes are addressed by introducing the complex wavelet transformation. Numerical simulations with both high and low signal-to-noise ratios validate that CWMSOBI can overcome the above-mentioned issues while obtaining more accurate identified results than other blind identification methods.

Identification of Noise Source of the HVAC Using Complex Acoustic Intensity Method (복소음향인텐시티법을 이용한 HVAC의 소음원 검출)

  • Yang, Jeong-Jik;Lee, Dong-Ju
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1089-1096
    • /
    • 2010
  • The relation between the vibration induced from machinery and the radiated sound is complicated. Acoustic intensity method is widely used to obtain the accuracy of noise measurement and noise identification. In this study, as groundwork, the complex acoustic intensity method is performed to identify noise source and transmission path on different free space point source fields. As an industrial application, the complex acoustic intensity method is applied to HVAC to identify sound radiation characteristics in the near field. Experimental complex acoustic intensity method was applied to HVAC, it is possible to identify noise sources in complicated sound field characteristics which noise sources are related with each other, and certificate the validity of complex acoustic intensity. Especially, it can be seen that complex acoustic intensity method using both of active and reactive intensity is vital in devising a strategy for identification of noise. Also, the vector flow of acoustic intensity was investigated to identify sound intensity distributions and energy flow in the near field of HVAC.

Application of Sound Intensity Camera for the Noise Source Analysis (소음원 규명을 위한 음향 인텐시티 카메라 응용)

  • Lee, Chang-Myung;Bae, Young-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.229-230
    • /
    • 2009
  • A method is suggested for the noise source identification using the sound intensity method. The suggested method does not need to install the grid using wire or thread during the sound intensity measurement for the noise source identification. It utilizes a camera to show the grid on the screen not installing the real grid for the sound intensity method.

  • PDF

Development of the Analysis Tool for Contribution from a Noise Source with LabVIEW (랩뷰를 이용한 소음원 기여도 분석 툴 개발)

  • Choi, Ki-Soo;Jeong, Wei-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.650-651
    • /
    • 2008
  • In this thesis, source identification tool for NI-PXI equipment is developed with LabVEIW. For the purpose of examining propriety of developed tool, simulation is performed with several signals that have different frequency range. After checking the coherence functions for concerned frequency domain, an experiment is conducted on an evaporator that cause the principal noise of a refrigerator.

  • PDF

Ambient modal identification of structures equipped with tuned mass dampers using parallel factor blind source separation

  • Sadhu, A.;Hazraa, B.;Narasimhan, S.
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.257-280
    • /
    • 2014
  • In this paper, a novel PARAllel FACtor (PARAFAC) decomposition based Blind Source Separation (BSS) algorithm is proposed for modal identification of structures equipped with tuned mass dampers. Tuned mass dampers (TMDs) are extremely effective vibration absorbers in tall flexible structures, but prone to get de-tuned due to accidental changes in structural properties, alteration in operating conditions, and incorrect design forecasts. Presence of closely spaced modes in structures coupled with TMDs renders output-only modal identification difficult. Over the last decade, second-order BSS algorithms have shown significant promise in the area of ambient modal identification. These methods employ joint diagonalization of covariance matrices of measurements to estimate the mixing matrix (mode shape coefficients) and sources (modal responses). Recently, PARAFAC BSS model has evolved as a powerful multi-linear algebra tool for decomposing an $n^{th}$ order tensor into a number of rank-1 tensors. This method is utilized in the context of modal identification in the present study. Covariance matrices of measurements at several lags are used to form a $3^{rd}$ order tensor and then PARAFAC decomposition is employed to obtain the desired number of components, comprising of modal responses and the mixing matrix. The strong uniqueness properties of PARAFAC models enable direct source separation with fine spectral resolution even in cases where the number of sensor observations is less compared to the number of target modes, i.e., the underdetermined case. This capability is exploited to separate closely spaced modes of the TMDs using partial measurements, and subsequently to estimate modal parameters. The proposed method is validated using extensive numerical studies comprising of multi-degree-of-freedom simulation models equipped with TMDs, as well as with an experimental set-up.

Investigation of Source Modelling for External Noise Prediction of Railway Vehicles (철도차량 외부소음 예측을 위한 음원모델에 관한 고찰)

  • Kim, Jong-Nyeun
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1069-1077
    • /
    • 2009
  • For external noise prediction of railway vehicles, sophisticated individual source modelling as well as appropriate noise propagation model from the sources is necessary to ensure the accuracy of the predicted results and contributions of each equipment to the overall noise levels. Accurate and reasonable identification procedures of sound sources of equipment including source strength, directivity and positions installed in the train play an important role in a prediction model, since it is not easy to establish a simple model for the sources with a single rule due to the complexity of source characteristics of equipment in size and directivity pattern. This paper guidelines practical considerations for identification of noise sources in railway vehicles including typical source characteristics of several sub-systems that emits noise to the environment, particularly for electric multiple unit(EMU), and verify effectiveness of assumptions used in the modelling of equipment by measurement with a simple part. The predicted external noise level of a complete train using Exnoise, which was developed by Hyundai-Rotem and has been verified in the a lot of field-tests, incorporating source modelling considered in this paper shows close correlation with the measured ones.

  • PDF

Study of Software Development Model based on OpenSource (오픈소스 기반의 소프트웨어 개발 모델 연구)

  • Kim Jong-Bae;Song Jae-Young;Rhew Sung-Yul
    • Journal of Digital Contents Society
    • /
    • v.6 no.4
    • /
    • pp.229-234
    • /
    • 2005
  • Companies are attempting application of open source software development approach method as new alternatives to solve roiling pints of the existing software developments such as quality of software, development speeds and cost. On the other hand, various analyses about open source software were performed, but concrete procedures or the results of suitable study about a way to utilize open source for a software development in actual industry are not yet. This study presented process model for identification, valuation selection of suitable open source, and modification application or commercializing.

  • PDF

A Study on Noise Identification of Compressor Based on Two Dimensional Complex Sound Intensity (Two Dimensional Complex Sound Intensity를 이용한 압축기 소음원 규명에 관한 연구)

  • 안병하;김영수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.83-92
    • /
    • 2000
  • Sound intensity method is well known as a visualization technique of sound field or sound propagation in noise control. Sound intensity or energy flux is a vector quantity which describes the amount and the direction of net flow of acoustic energy at a given position. Especially two dimensional sound intensity method is very useful in evaluating periodic characteristics and acoustic propagation mode of noise source. In this paper, we have studied the noise source Identification, acoustic sound field analysis, and characteristics of noise source of rotary compressor and scroll compressor for air conditioner using complex sound intensity method. Also we proposed a now method of time domain analysis which is used in evaluating of position of noise source in rotary and scroll compressor in this paper This paper presents the advantage, simplicity and economical efficiency of this method by analysing the characteristics of noise source with two dimensional complex sound intensity simultaneously.

  • PDF