• Title/Summary/Keyword: source distribution method

Search Result 818, Processing Time 0.025 seconds

Force limited vibration testing: an evaluation of the computation of C2 for real load and probabilistic source

  • Wijker, J.J.;de Boer, A.;Ellenbroek, M.H.M.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.2
    • /
    • pp.217-232
    • /
    • 2015
  • To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications. Besides the random vibration specification, the total mass and the turn-over frequency of the load (test item), $C^2$ is a very important parameter for FLVT. A number of computational methods to estimate $C^2$ are described in the literature, i.e., the simple and the complex two degrees of freedom system, STDFS and CTDFS, respectively. The motivation of this work is to evaluate the method for the computation of a realistic value of $C^2$ to perform a representative random vibration test based on force limitation, when the adjacent structure (source) description is more or less unknown. Marchand discussed the formal description of getting $C^2$, using the maximum PSD of the acceleration and maximum PSD of the force, both at the interface between load and source. Stevens presented the coupled systems modal approach (CSMA), where simplified asparagus patch models (parallel-oscillator representation) of load and source are connected, consisting of modal effective masses and the spring stiffness's associated with the natural frequencies. When the random acceleration vibration specification is given the CSMA method is suitable to compute the value of the parameter $C^2$. When no mathematical model of the source can be made available, estimations of the value $C^2$ can be find in literature. In this paper a probabilistic mathematical representation of the unknown source is proposed, such that the asparagus patch model of the source can be approximated. The chosen probabilistic design parameters have a uniform distribution. The computation of the value $C^2$ can be done in conjunction with the CSMA method, knowing the apparent mass of the load and the random acceleration specification at the interface between load and source, respectively. Data of two cases available from literature have been analyzed and discussed to get more knowledge about the applicability of the probabilistic method.

Analysis of Sloshing Problem by Numerical Method (수치기법을 이용한 Sloshing 문제의 해석)

  • Y.H. Kim;Y.J. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.33-44
    • /
    • 1992
  • In the present paper, three types of analytic and numerical method are applied to the analysis of sloshing problem. Analytic solution with linear free-surface boundary condition is introduced and numerical methods are used to analyze flued flow trapped in two-and three-dimensional tanks. Source-distribution method is applied to two- and three-dimensional rectangular tanks and sphere tank. Finite difference method is utilized to compute fluid motion and pressure evolution in two dimensional tanks with girders or slopes. Calculated results are compared with those of experiment or other numerical techniques.

  • PDF

Properties and classification of air discharge by Kohonen network (기중방전의 특성분석과 Kohonen network에 의한 방전원의 패턴분류)

  • 강성화;박영국;이광우;김완수;이용희;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.704-707
    • /
    • 1999
  • Partial discharge(PD) in air insulated electric power systems is responsible for considerable power lossesfrom high voltage transmission lines. PD in air often leads to deterioration of insulation by the combined action of the discharge ions bombarding the surface and the action of chemical compounds that are formed by the discharge and may give rise to interference in ommunication systems. PD can indicate incipient failure. Thus understanding and classification of PD in air is very important to discern source of PD. In this paper, we investigated PD in air by using statical method. We classified air discharge with corona, surface discharge and cavity discharge by source of discharge. we used the mean pulse-height phase distribution $H_{qmean}(\psi)$, the max pulse-height phase distribution $H_{qmax}(\psi)$ , the pulse count phase distribution $H_n(\psi)$ and the max pulse height vs. repetition rate $H_{q}(n)$ for analysis PD pattern. We used statistical operators, such as skewness(S+. S-1, kurtosis(K+, K-), mean phase(AP+. AP-), cross-correlation factor(CC) and asymmetry from the distribution.

  • PDF

Basic Research on the Quantitative Estimation of Yellow Sand (黃砂의 量的推定을 위한 基礎硏究)

  • 김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.6 no.1
    • /
    • pp.11-21
    • /
    • 1990
  • To quantitatively estimate the effect of yellow sand(loess) fromt he Northern China, various soil sources having similar chemical compositions to yellow sands should be separated and identified. After that, mass contribution for yellow sand can be calculated. The study showed that it was impossible to solve this problem by the traditional bulk analyses. However, particle-by-particle analysis by a CCSEM (computer controlled scanning electron microscope) gave enormous potentials to solve it. To perform this study, seven soil source data analyzed by CCSEM were obtained from Texas, U.S.A. Initially, each soil date was classified into two groups, coarse and fine particle groups since the particle number distribution showed a minimum occurring at 5.2$\mu$m of aerodynamic diameter. Particles in each group were then classified into one of the 283 homogeneous particle classes by the universal classification rule which had been built by an expert system in the early study. Further, mass fractions and their uncertainties for each class in each source were calculated by the Jackknife method, and then source profile matrix for the 7 soil sources was created. To use the profile matrix in the study of source contribution, it is necessary to test the degree of collinearity among sources. The profiles were tested by the singular value decomposition method. As a result, each soil source characterized by artificially created variables was totally independent each other and is ready to use in source contribution studies as a receptor model.

  • PDF

Study on Be-Dopplerization Technique for Rotating Source Localization (마이크로폰 어레이를 이용한 회전하는 소음원 가시화에 관한 연구)

  • Park, Sung;Lee, Ja-Hyung;Choi, Jong-Soo;Kim, Jai-Moo;Rhee, Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.200-204
    • /
    • 2005
  • The use of beamforming method and de-Dopplerization technique was applied in studying the rotating sound sources. Acoustic analysis of a moving sound source required that the measured sound signals be do-Dopplerized and restored as of the original emission signals. Two main issues of the signal reconstruction in time domain are addressed herein: First, to remove Doppler effect from the measured data and to restore the original emission data of the moving source. The difference of the time domain beamforming from the frequency domain beamforming was mentioned. Also, the time domain beamforming method is deployed in the test and the comparisons were made to the frequency domain results. The time domain signal reconstruction was numerically simulated prior to the application. To validate the de-Dopplerization Performance, the rotating Point sources were examined and localized by the use of a phased array of microphone. The application of prop-rotor was conducted in a hovering condition. The results of reconstructing time signals of rotating sources and its locations were shown in the power distribution maps. In the prop-rotor measurements, the acoustic source locations were successfully verified in varying positions for different frequencies of interest.

  • PDF

Adaptive group of ink drop spread: a computer code to unfold neutron noise sources in reactor cores

  • Hosseini, Seyed Abolfazl;Afrakoti, Iman Esmaili Paeen
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1369-1378
    • /
    • 2017
  • The present paper reports the development of a computational code based on the Adaptive Group of Ink Drop Spread (AGIDS) for reconstruction of the neutron noise sources in reactor cores. AGIDS algorithm was developed as a fuzzy inference system based on the active learning method. The main idea of the active learning method is to break a multiple input-single output system into a single input-single output system. This leads to the ability to simulate a large system with high accuracy. In the present study, vibrating absorber-type neutron noise source in an International Atomic Energy Agency-two dimensional reactor core is considered in neutron noise calculation. The neutron noise distribution in the detectors was calculated using the Galerkin finite element method. Linear approximation of the shape function in each triangle element was used in the Galerkin finite element method. Both the real and imaginary parts of the calculated neutron distribution of the detectors were considered input data in the developed computational code based on AGIDS. The output of the computational code is the strength, frequency, and position (X and Y coordinates) of the neutron noise sources. The calculated fraction of variance unexplained error for output parameters including strength, frequency, and X and Y coordinates of the considered neutron noise sources were $0.002682{\sharp}/cm^3s$, 0.002682 Hz, and 0.004254 cm and 0.006140 cm, respectively.

Effects of the Flexibility on the Structural Responses of a Tension Leg Platform (인장계류식 해양구조물의 구조응답에 미치는 굽힘강성의 영향)

  • Lee, Chang-Ho;Lee, Soo-Lyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.38-44
    • /
    • 2007
  • The structural response characteristics of Tension leg platforms(TLPs) in waves are examined for presenting the basic data for structural design of TLPs. The numerical approach is based on a combination of the three dimensional source distribution method and the structural response analysis method, in which the superstructure of TLP is assumed to be flexible instead of rigid. Hydrodynamic and hydrostatic forces on the submerged surface of a TLP have been accurately calculated by excluding the assumption of the slender body theory. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in structural analysis. The mooring forces are estimated as the sum of pretension of tendons and variational tension due to longitudinal displacements. Stiffness matrices of elastic beam elements connecting nodes are formulated by ordinary method of three dimensional frame analysis. The equation of motion about the whole structure is obtained by the sum of forces and moments acting on each nodes.

Dynamic Response Analysis of Tension Leg Platforms in Multi-directional Irregular Waves (Frequency Domain Analysis) (다방향 불규칙파중의 TLP의 동적응답해석 (주파수영역 해석))

  • 구자삼;조효제;이창호
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.23-32
    • /
    • 1994
  • A numerical procedure is described for simultaneously predicting the motion and structural responses of tension leg platforms (TLPs) in multi-directional irregular waves. The developed numerical approach is based on a combination of a three dimensional source distribution method, the finite element method for structurally treating the space frame elements and a spectral analysis technique of directional waves. The spectral description for the linear responses of a structure in the frequency domain is sufficient to completely define the responses. This is because both the wave inputs and the responses are stationary Gaussian ran dom process of which the statistical properties in the amplitude domain are well known. The hydrodynamic interactions among TLP members, such as columns and pontoons, are included in the motion and structural analysis. The effect of wave directionality has been pointed out on the first order motion, tether forces and structural responses of a TLP in multi-directional irregular waves.

  • PDF

A Dynamic structural response analysis of tension leg platforms in current and waves (조류와 파랑 중에서의 TLP의 동적구조응답해석)

  • Lee, S.C.;Goo, J.S.;Ha, Y.R.;Jo, H.J.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.65-71
    • /
    • 2012
  • A numerical procedure is described for predicting the dynamic structural responses of tension leg platforms(TLPs) in current and waves. The developed numerical approach is based on a combination of the three dimensional source distribution method and the dynamic structural analysis method, in which the superstructure of the TLPs is assumed to be flexible instead of rigid. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in the dynamic structural analysis. The equations of motion of a whole structure are formulated using element-fixed coordinate systems which have the origin at the nodes of the each hull element and move parallel to a space-fixed coordinate system. The dynamic structural responses of a TLP were analyzed in the case of including the current or not including the one in waves and the effects of current on the TLP were investigated.

A dynamic response Analysis of Tension Leg Platforms in Waves (II) (인장계류식 해양구조물의 동적응답해석(II))

  • 구자삼;박찬후;이창호
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.25-35
    • /
    • 1996
  • A numerical procedure is described for predicting the motion and structural responses of tension leg platforms(TLPs) in waves. The developed numerical approach is based on a combination of a three dimensional source distribution method and the dynamic response analysis method, in which the superstructure of TLPs is assumed to be flexible instead of rigid. Restoring forces by hydrostatic pressure on the submerged surface of a TLP have been accurately calculated by excluding the assumption of the slender body theory. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in the motion and structural analysis. The equations of motion of a whole structure are formulated using element-fixed coordinate systems which have the orgin at the nodes of the each hull element and move parallel to a space-fixed coordinate system. Numerical results are compared with the experimental and numerical ones, which are obtained in the literature, concerning the motion and structural responses of a TLP in waves. The results of comparison confirmed the validity of the proposed approach.

  • PDF