• Title/Summary/Keyword: sounder

Search Result 252, Processing Time 0.024 seconds

Estimation of Countermeasures and Efficient Use of Volume of Artificial Reefs Deployed in Fishing Grounds (어초어장으로 시설된 사각형어초의 수량 산정 및 유효공용적 평가)

  • Kim, Ho-Sang;Lee, Jeong-Woo;Kim, Jong-Ryeol;Yoon, Han-Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.181-187
    • /
    • 2009
  • To estimate the status and volume of artificial reefs(ARs) deployed at the sea bottom in fishing grounds, this study assessed the initial volume of ARs, the cubic volume of AR groups, and the porosity of each AR using image data collected during a survey using a multi-beam echo sounder(MBES) and a side scan sonar(SSS). These results were compared with data collected during diver surveys and used to develop a new method and prediction formulas for countermeasures, facility volume, and efficient use of volume for deployed ARs(cubic concrete). The field survey results for nine ARs deployed in the Busan Sea region were calculated, and the average value of coefficient k(indicating the efficient use of volume ratio) among ARs was 0.753, and the correlation between coefficient k and year(Yr) of deployment was calculated as k=0.0023Yr+0.725. The relationship between these two factors was poor. In years following the deployment of artificial reefs, coefficient k and year of deployment were not correlated, in spite of the hardening ground due to subsidence and the reduced distance between ARs. Consequently, it is reasonable to suppose that coefficient k was defined by bottom surface conditions and initial deployment conditions.

  • PDF

Distribution of the Deep Scattering Layer around Uljin Coastal Area (울진 연안의 음향 산란층 분포)

  • HWANG Doo Jin;KIM Dong Eon;JEONG Sun Beom;SON Yong Uk;CHAE Jin Ho;CHO Ki Ryang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.38 no.3
    • /
    • pp.205-213
    • /
    • 2005
  • A hydroacoustic and a close-open-close zooplankton net survey were conducted to understand the distribution characteristics of the deep scattering layer (DSL) and to estimate the density of zooplankton in the DSL, in the Uljin coastal area. The survey was carried out during March 13-14 and June 4-5, 2003 at each station for zooplankton. The vertical migration mechanisms of zooplankton are very variable to the taxa. In this study, after we grasp the vertical migration of zooplankton through the results of an echo-sounder survey, we verified the mechanisms of their vertical migration in the Uljin coastal area. Also, to estimate effectively the biomass of zooplankton, we researched the acoustic scattering strength according to the species. On the basis of these results, we devised a method for estimating zooplankton biomass through comparing net and echo-soundings. We obtained the results as a follows; 1) According to the examination of collections from the net sampling, in March, 2003, Euphausia pacifica comprised $38\%$ of zooplanktons inhabiting the sound scattering layer, while copepods, chaetognaths, and amphipods accounted for $29\%,\;23\%\;and\;10\%$, respectively. And in June, 2003, the ratio of E. pacifica was $51\%$, copepods $43\%$, and the others comprised $6\%$. In both March and June E. pacifica showed dominance among the species of zooplankton. 2) The analysis of vertical distribution through acoustic data in the scattering layer was more apparent in June (spring/summer) of 2003, than in March (winter/spring) of that year. The vertical migration of zooplankton peaked around sunrise and sunset in both March and June. 3) As for the sound scattering layer, it distributed in the open sea in March, and in the inland sea in June. Therefore it is suggested that some zooplankton species such as E. pacifica performed ontogenic horizontal migration througth the spring and early summer.

Sunken Ship Precision Image Analysis Using Multi-Beam Echo Sounding Data (다중빔음향측심 자료를 이용한 침몰선박 정밀영상 분석 연구)

  • Lee, Seung-Hyun;Seo, Young Kyo;Suh, Jae-Joon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.863-868
    • /
    • 2016
  • In this study, the precise shapes of sunken ships and information on seafloor topography were analyzed using data obtained from a multi-beam echo sounder. The state of each sunken ship was analyzed by processing diverse imagery data which was compared with data obtained from past investigations to determine changes in the state and circumjacent seafloor topography. Apparent changes in the seafloor topography around one sunken ship, the "Pacific Friend", were found from stern to bow as a result of continued submarine erosion and sedimentation. In the case of sunken ship "No. 7 Haeseong", the partial collapse of the bow was revealed in the seabed images captured in 2015, though it had still been intact in images captured during the Korea Hydrographic and Oceanographic Agency's investigation in 2011. This partial collapse was presumed to have resulted from the effects of continued tidal currents, the cargo load of the ship and continued corrosion of the ship over a long time on the seabed. Continuous monitoring of residual fuel inside the ship is necessary to avoid leakage and potential marine pollution. By conducting image analysis on these sunken ships, it has been determined that the structural safety of the ships is seriously influenced by tidal currents and seafloor topography, while the hulls will be continuously changed by corrosion. As a result, it can be concluded that the development of prediction and response techniques that take into consideration residual fuel leakage and environmental changes according to the geological characteristics of sunken ships is necessary.

Relationship between the Catch of Squid, Todarodes pacificus STEENSTRUP, According to the Jigging Depth of Hooks and Underwater Illumination in Squid Jigging Boat (소형 오징어 채낚기 어선의 낚시 깊이별 조획량과 수중 조도)

  • CHOI Sok-Jin;ARAKAWA Hisayuki
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.6
    • /
    • pp.624-631
    • /
    • 2001
  • The relationship between the catch of squid, Todarodes pacificus, according to the jigging depth and underwater illumination by fishing lamps was investigated during nighttime operations off-Tusima Islands in November 1994 and off-Oki Islands in November 1995. We used echo sounder to observe the distribution of squid. Echo images on the echo sounder showed the distribution of squid at the water layer of 50 meter depth at the beginning of jigging operation. After the time elapsed, a continuous dense image had moved to the layer of 60-80 meters jigging depth. A larger number of squid were caught by jigging machines set at a lowest depth of 90 meters, when it compared with machines set at a 60 meters. However, Catch increased around 60 meters jigging depth, when fishing lamps output were switched to 24 kW halogen lights:.The underwater illumination, under the each light power of fishing lamps of squid jigging boat was continuously measured with an underwater illuminometer. Values of the underwater illumination, when schools were distributed from 60 to 80 meters, ranged from $3.0\times10^{-2}lx\;to\;3.4\times10^{-3}lx$ in average at $80\~360$ kW fishing lamps output of squid jigging boat.

  • PDF

A study on the performance verification of an around-view sonar and an excavation depth measurement sonar application to ROV for track-based heavy works (트랙기반 중작업용 ROV에 적용 가능한 어라운드 뷰 소나 및 굴착깊이 측정 소나 성능 검증에 관한 연구)

  • Son, Ki-Jun;Park, Dong-Jin;Kim, Min-Jae;Oh, Young-Suk;Park, Seung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.2
    • /
    • pp.161-167
    • /
    • 2019
  • In this paper, the performance verification of an around-view sonar and an excavation depth measuring sonar applicable to track-based ROVs (Remotely Operated underwater Vehicles) for heavy duty work is studied. For the performance verification, an experiment is carried out in a water tank and at sea by attaching the around-view sonar and the excavation depth measuring sonar for a heavy work ROV. In the case of the around-view sonar, image sonars are mounted on ROV in four directions (front, back, left and right) and in the case of the excavation depth measuring sonar, the same kind of MBES (Multi Beam Echo Sounder) is mounted on the front of the ROV. The result of an operation test of the ROV equipped with these sonars shows that the sonar systems are rarely affected by high turbidity due to sedimentation during the operation. In the case of the around-view sonar, it is possible to see rock formation, gravel and sandbank 30 m ahead of the ROV. It is confirmed that the excavation depth can be measured after the ROV has performed the excavation. This experiment demonstrates that the ROV can improve the efficiency of the work by utilizing the around-view sonar and the excavation depth measuring sonar.

Correction Algorithm of Errors by Seagrasses in Coastal Bathymetry Surveying Using Drone and HD Camera (드론과 HD 카메라를 이용한 수심측량시 잘피에 의한 오차제거 알고리즘)

  • Kim, Gyeongyeop;Choi, Gunhwan;Ahn, Kyungmo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.553-560
    • /
    • 2020
  • This paper presents an algorithm for identifying and eliminating errors by seagrasses in coastal bathymetry surveying using drone and HD camera. Survey errors due to seagrasses were identified, segmentated and eliminated using a L∗a∗b color space model. Bathymetry survey using a drone and HD camera has many advantages over conventional survey methods such as ship-board acoustic sounder or manual level survey which are time consuming and expensive. However, errors caused by sea bed reflectance due to seagrasses habitat hamper the development of new surveying tool. Seagrasses are the flowering plants which start to grow in November and flourish to maximum density until April in Korea. We developed a new algorithm for identifying seagrasses habitat locations and eliminating errors due to seagrasses to get the accurate depth survey data. We tested our algorithm at Wolpo beach. Bathymetry survey data which were obtained using a drone with HD camera and calibrated to eliminate errors due to seagrasses, were compared with depth survey data obtained using ship-board multi-beam acoustic sounder. The abnormal bathymetry data which are defined as the excess of 1.5 times of a standard deviation of random errors, are composed of 8.6% of the test site of area of 200 m by 300 m. By applying the developed algorithm, 92% of abnnormal bathymetry data were successfully eliminated and 33% of RMS errors were reduced.

The Comparative Analysis of Reservoir Capacity of Chungju Dam based on Multi Dimensional Spatial Information (다차원 공간정보 기반의 충주댐 저수용량 비교분석)

  • Lee, Geun Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5D
    • /
    • pp.533-540
    • /
    • 2010
  • Dam is very important facility in water supply and flood control. Therefore study needs to analyze reservoir capacity accurately to manage Dam efficiently. This study compared time series reservoir capacity using multi-dimensional spatial information to Chungju Dam reservoir and major conclusions are as follows. First, LiDAR and multi beam echo sounder survey were carried out in land zone and water zone of Dam reservoir area. And calibration process was performed to enhance the accuracy of survey data and it could be constructed that multi dimensional spatial information which was clearly satisfied with the standard of tolerance error by validation with ground control points. Reservoir capacity by water level was calculated using triangle irregular network from detailed topographic data that was constructed by linked with airborne LiDAR and multi beam echo sounder data, and curve equation of reservoir capacity was developed through regression analysis in 2008. In the comparison of the reservoir capacity of 2008 with those of 1986 and 1996, the higher water level goes, total reservoir capacity of 2008 showed decrease because of the increase of sediment in reservoir. Also, erosion and sediment area could be analyzed through calculating the reservoir capacity by the range of water level. Especially the range of water level as 130.0~135.0 which is the upper part of average water level, showed the highest erosion characteristics during 1986~2008 and 1996~2008 and it is considered that the erosion of reservoir slant by heavy rainfall is major reason.

An Enhanced Approach for a Prediction Method of the Propagation Characteristics in Korean Environments at 781 MHz

  • Jung, Myoung-Won;Kim, Jong Ho;Choi, Jae Ick;Kim, Joo Seok;Kim, Kyungseok;Pack, Jeong-Ki
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.911-921
    • /
    • 2012
  • In high-speed wireless communications, an analysis of the propagation characteristics is an important process. Information on the propagation characteristics suitable for each environment significantly helps in the design of mobile communications. This paper presents the analysis results of radio propagation characteristics in outdoor environments for a new mobile wireless system at 781 MHz. To avoid the interference of Korean DTV broadcasting, we measure the channel characteristics in urban, suburban, and rural areas on Jeju Island, Republic of Korea, using a channel sounder and $4{\times}4$ antenna. The path loss (PL) measurement results differ from those of existing propagation models by more than 10 dB. To analyze the frequency characteristics for Korean propagation environments, we derive various propagation characteristic parameters: PL, delay spread, angular spread, and K-factor. Finally, we verify the validity of the measurement results by comparing them with the actual measurement results and 3D ray-tracing simulation results.

Measurement-Based Stochastic Cross-Correlation Models of a Multilink Channel in Cooperative Communication Environments

  • Park, Jae-Joon;Kim, Myung-Don;Kwon, Heon-Kook;Chung, Hyun Kyu;Yin, Xuefeng;Fu, Yaoyao
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.858-868
    • /
    • 2012
  • In this paper, stochastic models for the cross-correlation of multiple channels are established based on measurement data collected using a wideband multiple-input multiple-output relay Band Exploration and Channel Sounder system at 3.7 GHz. We propose models for the cross-correlation characteristics of large-scale parameters (LSPs) between two links, that is, the base station and mobile station (MS) link and the relay station and MS link. The LSPs include shadow fading, Rician K-factor, delay spread, angle spread of arrival, and angle spread of departure. Furthermore, models are established for the cross-correlation of the small-scale fading in the impulse responses of two links. The statistics of these model parameters are investigated as functions of geometrical features of the multilink. They are extracted from a large amount of cross-correlation observations, which are obtained in three measurement sites along more than one hundred measurement routes. These models can be used together with the standard single-link channel models for the generation of correlated components, for example, path clusters, in two separate channels.

Terrain Referenced Navigation for Autonomous Underwater Vehicles (자율무인잠수정의 지형참조항법 연구)

  • Mok, Sung-Hoon;Bang, Hyochoong;Kwon, Jayhyun;Yu, Myeongjong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.702-708
    • /
    • 2013
  • Underwater TRN (Underwater Terrain Referenced Navigation) estimates an underwater vehicle state by measuring a distance between the vehicle and undersea terrain, and comparing it with the known terrain database. TRN belongs to absolute navigation methods, which are used to compensate a drift error of dead reckoning measurements such as IMU (Inertial Measurement Unit) or DVL (Doppler Velocity Log). However, underwater TRN is different to other absolute methods such as USBL (Ultra-Short Baseline) and LBL (Long Baseline), because TRN is independent of the external environment. As a magnetic-field-based navigation, TRN is a kind of geophysical navigation. This paper develops an EKF (Extended Kalman Filter) formulation for underwater TRN. A filter propagation part is composed by an inertial navigation system, and a filter update is executed with echo-sounder measurement. For large-initial-error cases, an adaptive EKF approach is also presented, to keep the filter be stable. At the end, simulation studies are given to verify the performance of the proposed TRN filter. With simplified sensor and terrain database models, the simulation results show that the underwater TRN could support conventional underwater navigation methods.