• Title/Summary/Keyword: sound-damping

Search Result 154, Processing Time 0.03 seconds

Floor Impact Sound and Vibration Characteristics Affected by the Compressive Strength of Concrete (콘크리트 슬래브 압축강도에 따른 바닥충격진동 및 소음특성)

  • Jeong, Jeong-Ho;Yoo, Seung-Yup;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.796-799
    • /
    • 2005
  • In 2005, a regulation on the heavy-weight impact sound was released, which restricted concrete slab thickness of standard floor to 210mm. To reduce heavy-weight impact sound, damping materials and structural reinforcement system have been proposed. In this study, the effect of compressive strength on the heavy-weight impact vibration and sound were investigated. FEM analysis was conducted for the 34PY apartment with different concrete strength (210, 350, 420kg/cm$^2$). In addition, apartment floors with different concrete strength were constructed and the floor impact vibration and sound were measured. Results of FEM analysis and measurement show that the resonance frequency of concrete slab was increased by the increment of concrete strength. However, floor impact sound pressure level did not decrease because the nor impact vibration and sound pressure level in 63Hz band increased.

  • PDF

Study on the Effect of the Sound-Deadening Paint on the Inside Running Noise in Railway Vehicles (제진도료가 전동차 실내소음에 미치는 영향에 관한 연구)

  • Woo, Kwang-Je
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.702-706
    • /
    • 2009
  • Internal running noise of a vehicle running in open field is the summation of air borne noise and structure-borne noise. In this paper vibration damping characteristics of carbody are investigated to see the effect of sound-deadening paint on the internal running noise. By using SEA method, vibration levels of complete train with and without sound-deadening paint are estimated and structure borne noise levels are estimated.

  • PDF

Materials Technology for Car Sound and Vibration Barriers (자동차용 소리, 진동 차단성 소재기술)

  • Kim, Ki-Seok;Choi, Kyeong-Eun;Ryu, Jeong-Seok;Kweon, Young-Min;Kang, Chang-Gi;Youn, Woo-Won;Park, Soo-Jin
    • Elastomers and Composites
    • /
    • v.46 no.1
    • /
    • pp.10-21
    • /
    • 2011
  • Recently, with developments in the automotive industry, sound and vibration damping have a considerable attraction with a diversified customer needs and advanced automobile. In general, among various materials, textile materials, such as felt and glass fibers, polyurethane foam, and PET fiber materials were used to reduce sound and vibration of the automobile. These materials were located in various main parts of the automobile to block sound and vibration, resulting in a comfortable ride. In addition, to improve fuel economy, weight reduction and cost saving for the automobile were also being considered together as well as the reduction of sound and vibration of the automobile. Therefore, in this paper, we focused on the need of interior sound and vibration absorption materials in the automobile and absorption materials-related technologies.

A Study on Prediction of vibration and Sound Radiation by Plate With Four Edges Clamped (네 변이 고정된 평판의 진동 및 방사 소음 예측에 관한 연구)

  • 심현진;이정윤;오재응
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.743-747
    • /
    • 2003
  • In recent years, several studies of the practical application of active sound and vibration control have been developed to plate to plate response with various boundary conditions. This study considers vibration and sound radiation for the clamped rectangular plate. The radiation of a sound from rectangular plate can be calculated that the velocity of a vibrating plate is analyzed. The vibration formulation is based on a variation method for the vibration of the plate, and assumes no damping, no fluid loading of the structure. And the plate is exited by harmonic point force. The radiation of sound from plate is analyzed in the far field, and is calculated from the Rayleigh integral. The prediction results of vibration and sound level have proved with FEM or BEM.

  • PDF

PREDICTION OF SOUND RADIATION FROM TIRE TREADBAND VIBRATION

  • Kim, B.S.
    • International Journal of Automotive Technology
    • /
    • v.2 no.1
    • /
    • pp.33-38
    • /
    • 2001
  • The noise generated from a treadband mechanism of a tire has been the subject of this research. In particular, the treadband has been treated as an infinite tensioned beam resting on an elastic foundation which includes damping. The main objective is here to predict the sound power generated from a system mentioned above by locating harmonic point forces representing the excitation of treadband at the contact patch. It is possible to predict the sound power radiated from this structure by wavenumber transformation techniques. To find out the minimum radiated sound power, All parameters were varied. Thus this model can be used as a tire design guide for selecting parameters which produce the minimum noise radiation.

  • PDF

Analysis of Reducing Tonal Noise of the Gas Turbine Generator in order to Reduce Underwater Radiated Noise of a Naval Vessel (수중방사소음 저감을 위한 함정용 개스터빈 발전기의 순음 저감 분석)

  • Han, Hyung-Suk;Choi, Ki-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.155-162
    • /
    • 2009
  • Because the tonal sound of the underwater noise in a naval vessel can be identified from the sub-marine of the enemy, it should be reduced sufficiently. This kind of the noise usually comes from the structure-borne noise of the onboard machine and transfers to the sea through the hull of the ship. The vibration at the high frequency can be reduced sufficiently with damping material. In this paper, the damping coefficient of the steel plate with damping sheet is evaluated by experiment. Using these evaluated properties, the numerical analysis is performed in order to evaluate how much vibration of the generator can be reduced applying damping sheet on the encloser and base of it.

  • PDF

Multi-mode noise reduction of using piezoelectric shunt damping smart panels (압전션트를 이용한 패널의 다중 모드 소음 저감에 관한 연구)

  • Kim, Joon-Hyoung;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.216-221
    • /
    • 2002
  • In this paper, the transmitted noise reduction of smart panels of which passive piezoelectric shunt damping is used, is experimentally studied. Shunt damping experiments are based on the measured electrical impedance model. A passive shunt circuit composed of inductors, and a load resistor is devised to dissipate the maximum energy into the joule heat energy. For multi-mode shunt damping, the shunt circuit is redesigned by adding a blocking circuit. Also the optimal location of the piezoelectric patch is studied by FEM in order to cause the maximum admittance from the patch for each mode of aluminum plate. In results, the transmitted sound pressure level of panels is efficiently reduced for multi-modes

  • PDF

Damping Layout Optimization to Reduce Structure-borne Noises in a Two-Dimensional Cavity (이차원 공동의 구조기인소음 저감을 위한 제진재의 최적배치)

  • Lee Doo-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.805-812
    • /
    • 2006
  • An optimization formulation is proposed to minimize sound pressures in a two-dimensional cavity by controlling the attachment area of unconstrained damping materials. For the analysis of structural-acoustic systems, a hybrid approach that uses finite elements for structures and boundary elements for cavity is adopted. Four-parameter fractional derivative model is used to accurately represent dynamic characteristics oJ the viscoelastic materials with frequency and temperature. Optimal layouts of the unconstrained damping layer on structural wall of cavity are identified according to temperatures and the amount of damping material by using a numerical search algorithm.

  • PDF

Analysis of Reducing Tonal Noise of the Gas Turbine Generator in order to Reduce Underwater Radiated Noise of a Naval Vessel (수중방사소음 저감을 위한 함정용 개스터빈 발전기의 순음 저감 분석)

  • Han, Hyung-Suk;Choi, Ki-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1329-1337
    • /
    • 2009
  • Because the tonal sound of the underwater noise in a naval vessel can be identified from the sub-marine of the enemy, it should be reduced sufficiently. This kind of the noise usually comes from the structure-borne noise of the onboard machine and transfers to the sea through the hull of the ship. The vibration at the high frequency can be reduced sufficiently with damping material. In this paper, the damping coefficient of the steel plate with damping sheet is evaluated by experiment. Using these evaluated properties, the numerical analysis is performed in order to evaluate how much vibration of the generator can be reduced applying damping sheet on the encloser and base of it.

Reduction of Structure-borne Noises in a Two-Dimensional Cavity using Optimal Treatment of Damping Materials (제진재의 최적배치를 통한 이차원 공동의 구조기인소음 저감)

  • Lee, Doo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1581-1587
    • /
    • 2006
  • An optimization formulation is proposed to minimize sound pressures in a two-dimensional cavity by controlling the attachment area of viscoelastic unconstrained damping materials. For the analysis of structural- acoustic systems, a hybrid approach that uses finite elements for structures and boundary elements for cavity is adopted. Four-parameter fractional derivative model is used to accurately represent dynamic characteristics of the viscoelastic materials with respect to frequency and temperature. Optimal layouts of the unconstrained damping layer on structural wall of cavity are identified according to temperatures and the amount of damping material by using a numerical search algorithm.