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ABSTRACT-The noise generated from a treadband mechanism of a tire has been the subject of this research. In
particular, the treadband has been treated as an infinite tensioned beam resting on an elastic foundation which includes
damping. The main objective is here to predict the sound power generated from a system mentioned above by locating
harmonic point forces representing the excitation of treadband at the contact patch. It is possible to predict the sound
power radiated from this structure by wavenumber transformation techniques. To find out the minimum radiated sound
power, All parameters were varied. Thus this model can be used as a tire design guide for selecting parameters which

produce the minimum noise radiation.
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1. INTRODUCTION

The model of tread element may be used to predict the
force exerted on the treadband by contacting the road.
Here, this tread element model is assumed to be an
infinite beam model so that treadband can be treat as an
infinite elastic beam. The elastic foundation represents
the sidewall stiffness supporting the treadband. Wavenumber
transformation techniques make it possible to predict the
sound power radiated by such a structure.

In this paper, the problems in sound radiation of elastic
beam under the action of harmonic point forces moving
at subsonic speeds is studied. Further the reaction due to
light fluid loading on the vibratory response of the beam
is taken into account. Here, the beam is assumed to
occupy the plane z=0. The material of beam and the
elastic foundation are also assumed to be lossless and
governed by the law of Bernolli-Euler beam theory
including a tension force (T), damping coefficient (C),
and stiffness of foundation (k).

Mogilevskii 1981 studied the problems related to
sound radiation from beams under the action of a moving
harmonic point force in the absence of an elastic
foundation. Keltie and Peng 1985 computed the sound
power produced by a point-forced elastic beam, and
obtained quantitative measures of the power produced by
the flexural nearfield and the propagating portions of the
beam’s response.

*Corresponding author. e-mail: anvkbs@suncheon.ac.kr

33

The non-dimensional sound power is derived by integrating
of the surface intensity distribution over the entire beam.
The expression for sound power is integrated numerically
and the results are examined as a function of Mach number,
M, the wavenumber ratio, y, and stiffness factor, .

All parameters may be varied to allow for the
identification of optimal values (i.e., the set of parameters
which result in minimum radiated sound power).

Hence, this model lends itself to the problem of
treadband sound power minimization. Also the method of
superposition suggests that an arbitrary periodic point
load may be applied. Such an input causes altering the
sequence of the tread elements and pitch length, which
provides another tool for the minimization of radiated
sound power.

The purpose of this paper is to explain the response of
a sound power over a number of non-dimensional
parameters describing forcing velocity, treadband tension,
treadband stiffness, treadband damping, and foundation
stiffness.

2. FORMULATION OF SOUND POWER

In this section, a mathematical modeling and the key
procedures to predict the sound power radiated by such a
structure will be described. Under the assumption that an
infinite beam occupies the plane z=0 and the beam is
excited by a harmonically oscillating point force moving
in the x-direction at the velocity v,, as shown in Figure 1.

The space where z>0 is filled with the air. The infinite
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beam represents an “unrolled” tire. The sound radiated
from the treadband on either side of the contact patch.
The equation of motion for the beam is:

d'u d'u u ou
D8x4 P or Tgxz +(Caf * ka)

= F,8(x=v,0)¢" —p(x,2=0,1) (1)

Where u(x, ¢) is the transverse displacement of the beam,
o is the circular driving frequency, D is the flexural
stiffness of the beam; p,A is the mass per unit length of
the beam, T is the axial tension force; C is the foundation
damping coefficient; k, is the foundation stiffness, F, is
the input force amplitude, p is the acoustic pressure
induced by the surface motion, and §(x) is the Dirac delta
function respectively. The pressure distribution induced
in the air by the vibration beam is denoted by p(x, z, ©)
satisfying the wave equation in two dimensional space,
and is given by
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Where c, is the sound speed in the acoustic medium. The
boundary condition at z=0 is given by
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Where r, is the mass density of the acoustic medium. By
applying the spatial Fourier Transformation, the equation
becomes
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Where £ is the wave number variable. In conjunction
with the boundary condition, the time averaged radiated
sound power may be obtained by integrating the surface
of acoustic intensity distribution over the entire beam.
The force function in the wavenumber domain may be
written as

Eo,+a)r

F(&,t)=F,e 4)
This form implies that in the wavenumber domain, both
the transformed displacementhat U(&,7) and pressure
P(&,z,1) will have the common factor ¢/&%**" .

That is,
i/(&,t) = U(E)e ™" (5a)
p(&,2,0) = p(&,2) " (5b)

By substituting equation (5a) and (5b) into the beam
equation (1) and the acoustic equation (2), it is easily
found that
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Solving the wave equation,
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Therefore, pressure p(&, z) is
p(&,2) = p(&,z=0)e " (10)
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Where, M is the Mach number which is the same as V/c,,
and K, is the acoustic wavenumber equal to @/c,. Surface
intensity distribution I(x) is

b

I(x) = %Re[P(x)V‘(x)] (12)

Where, P(x) is surface pressure and V*(x) is a conjugate
form of surface velocity. By integrating the surface
intensity distribution over entire beam, sound power can
be obtained from the following formula for a unit width.

W= %Re[J:P(x)V*(x)dx] (13)
_1
W= 2Re
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Where, &, & are dummy variables. There can be written
as follows:

1
W= 47tRe
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Thererfore,



PREDICTION OF SOUND RADIATION FROM 35
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Surface pressure and a conjugate form of surface velocity
in wavenumber domain are

P(&,2=0) = REVFOY 1)) (18)
J(K,+MEY -
V(&) =j(EV+o)U'(€) (19

By substituting equation of surface pressure and conjugate
velocity into a sound power spectrum, the sound power
can be obtained as follows:
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Referring to Equation (11), it is seen that the denominator
of the integral in Equation (20) is real only over a
restricted interval of the integration range. Specializing to
the case of subsonic motion of the traveling force, the
limits within which k, is real are given by
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Let £&—K,C. (for dimensionless)
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The non-dimensional sound power radiated from the
beam is given by
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Where IT is the non-dimensional sound power obtained
by multiplying the dimensional power by the factor

4map?AYp,F,. In the integral, &=—1/(1+M) and &=1/(1—
M) are the shifted limits of the integration range; M=v,/c, is
the Mach number of the moving force; =1+ M{; y=K /k, is
the ratio of the acoustic wavenumber to the bending
wavenumber, k,=(0A@/D)" is the free bending wavenumber,
and a,=p,c/pAc, Jﬁ is the fluid loading factor. p, is the
volume density of the air, ¢, is the longitudinal wave speed of
the beam material and ¥is foundation stiffness factor. 7, (7/
(2.Jk,D)) is the axial tension factor, and B=C/2./p,Ak, ) is
foundation damping factor.

3. NUMERICAL RESULTS AND DISCUSSION

The curves presented show the variation of beam response
and radiated sound power over a range of the various
non-dimensional parameters. Identifying these parameters
of passenger vehicle tires will be the subject of further
investigation. To investigate the effects of the stiffness
factor (y) and tension (T) for the radiated sound power
level, the sound power was calculated as a function of the
variables, y;, with a few different values of the force
Mach number, M, and for a constant values of the
wavenumber ratio, y. The sound power radiated from a
beam under the action of one point forces is typically
represented by the curves in Figures 1.

The relative sound power level versus stiffness and
Mach number for the air loading is shown in Figure 2.
For a case of M=0, the most prominent feature is
relatively high radiation peaks emerge around the value
of y=1.0 for higher frequency. This phenomenon can be
called a resonance radiation. As the Mach number
increases, two different radiated sound power peaks are
build up. For example, if the Mach number M =0.5, then
one of the peaks is located in the range of ¥ = 1.0 and the
other is in ¥ >1.0. For the higher frequency range, the
sound power level is decreased if y>1.5 as shown in
figure, while the range of increases over 1.0 as the driving
frequency gets lower. The figure shows the sound power
level increased effectively on the compressive forces

F3 (x—v,t) e

vt

F5(x-vt)e

Figure 1. Treadband vibration model for moving harmonic point forces.
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Figure 2. Relative sound power level versus stiffness factor and mach number.
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Figure 3. Relative sound power level versus tension and mach number. (3= 0.1, y=0.2, y=0.5)
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Figure 4. Relative sound power level versus wavenumber and mach number.
(a) Air loading T=0.0, 8=0.1, y=0.5 and (b) Water loading 7= 0.0, =0.1, y=0.5

rather than tensile forces. It is found that the forces due to
the Mach number and tensile affect the location of the
radiated sound power peak.

4. CONCLUSIONS

The effects on the sound power emitted by harmonic point
forces moving on infinite elastic beams is investigated and
also the effects of foundation stiffness, tension, damping and
Mach number on the radiated sound power are investigated
in this paper, the following conclusions can be drawn:

(a) The values of stiffness factor(y) give an important
effect on the radiated sound power levels. For the case of
M =0, a resonance radiation and a coincidence peak are
produced close to the value of y = 1.0. This phenomenon

attributed to the doppler shift effect.

(b) When tensile force is applied, the sound power gets
larger than the case of compressive force is applied.

(c) As the Mach number increases, the strong coincidence
radiation peak for M =0 located at y = 1.0 and the
coincidence peak changes to range of y<l accordingly.
The expression for the radiated sound power makes it
possible to find parameter regions where the radiated
sound power is minimized. Thus, in principle this model
may form the foundation of a design guide for choosing
tire parameter so as to minimize noise radiation.
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