• Title/Summary/Keyword: sound velocity

Search Result 400, Processing Time 0.022 seconds

Particle image velocimetry measurement of complex flow structures in the diffuser and spherical casing of a reactor coolant pump

  • Zhang, Yongchao;Yang, Minguan;Ni, Dan;Zhang, Ning;Gao, Bo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.368-378
    • /
    • 2018
  • Understanding of turbulent flow in the reactor coolant pump (RCP) is a premise of the optimal design of the RCP. Flow structures in the RCP, in view of the specially devised spherical casing, are more complicated than those associated with conventional pumps. Hitherto, knowledge of the flow characteristics of the RCP has been far from sufficient. Research into the nonintrusive measurement of the internal flow of the RCP has rarely been reported. In the present study, flow measurement using particle image velocimetry is implemented to reveal flow features of the RCP model. Velocity and vorticity distributions in the diffuser and spherical casing are obtained. The results illuminate the complexity of the flows in the RCP. Near the lower end of the discharge nozzle, three-dimensional swirling flows and flow separation are evident. In the diffuser, the imparity of the velocity profile with respect to different axial cross sections is verified, and the velocity increases gradually from the shroud to the hub. In the casing, velocity distribution is nonuniform over the circumferential direction. Vortices shed consistently from the diffuser blade trailing edge. The experimental results lend sound support for the optimal design of the RCP and provide validation of relevant numerical algorithms.

Ultrasonic Evaluation for the Creep Damage of 2.25Cr1Mo Steel (2.25Cr1Mo강의 크리프 손상에 대한 초음파 시험평가)

  • Hur, Kwang-Beom;Lee, In-Cheol;Gung, Gye-Jo;Cho, Yong-Sang;Lee, Sang-Guk;Kim, Jae-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.31-36
    • /
    • 2000
  • High temperature and pressure materials in power plant are degraded by creep damage, if they are exposed to constant loads for long times, which occurs in the load bearing structures of pressurized components operating at elevated temperatures. Many conventional measurement techniques such as replica method, electric resistance method, and hardness test method for measuring creep damage have been used. So far, the replica method is mainly used for the Inspection of High temperature and pressure components. This technique is, however, restricted to applications at the surface of the testpieces and cannot be used to material inside. In this paper, ultrasonic evaluation for the detection of creep damage in the form of cavaties on grain boundaries or integranular microcracks are carried out. And the absolute measuring method of quantitative ultrasonic velocity technique for Cr-Mo material degradation is analyzed. As a result of ultrasonic tests for crept specimens, we find that the sound velocity is decreased as the increase of creep life fraction$({\Phi}_c)$ and also, confirmed that hardness is decreased as the increase of creep life fraction$({\Phi}_c)$ but the coefficient of ultrasonic attenuation is increased as the increase of creep life fraction$({\Phi}_c)$. Finally based on the result in this paper, it can be recognized that the ultrasonic techniques using velocities and attenuation coefficient factor are very useful non-destructive methods to evaluate the degree of material degradation in fossile power plants.

  • PDF

Sound Attenuation Coefficients and Biogenic Gas Content in the Offshore Surficial Sediments Around the Korean Peninsula (韓半島 周邊海域 海底 表層蓄積物 音波 空曠係數와 생物起源 氣滯含量)

  • 김한준;덕봉철
    • 한국해양학회지
    • /
    • v.25 no.1
    • /
    • pp.26-35
    • /
    • 1990
  • Sound velocities and attenuation coefficients of marine surface sediments were calculated from insitu acoustic experiments on 4 nearshore areas off Pohang, Pusan Yeosu, and Kunsan around the Korean Peninsula. The relationship between these values and physical properties of sediments was examined and attenuation mechanism was analysed using the estimated gas content. Sound velocities and attenuation coefficients ranging from 1470 to 1616 m/sec and 0.0565 to 0.6604 dB/kHz-m, respectively, are well related to sediment types. The attenuation coefficient is maximum in coarse silts, and the sound velocity increases with density. The gas content estimated less than 8 ppm increases with the decreasing sediment grain size. When the sediment size is greater than fine sand, sound attenuation is mostly due to friction losses, and probably negligible viscous loss remains unchanged with the varying physical properties of sediments. The maximum attenuation in coarse silts result from both friction loss and cohesion of finer sediments between the contacts of silt grains. The cohesion begins to be the dominant dissipative process with decreasing grain size from medium and fine silts.

  • PDF

Investigating the Effects of Hearing Loss and Hearing Aid Digital Delay on Sound-Induced Flash Illusion

  • Moradi, Vahid;Kheirkhah, Kiana;Farahani, Saeid;Kavianpour, Iman
    • Korean Journal of Audiology
    • /
    • v.24 no.4
    • /
    • pp.174-179
    • /
    • 2020
  • Background and Objectives: The integration of auditory-visual speech information improves speech perception; however, if the auditory system input is disrupted due to hearing loss, auditory and visual inputs cannot be fully integrated. Additionally, temporal coincidence of auditory and visual input is a significantly important factor in integrating the input of these two senses. Time delayed acoustic pathway caused by the signal passing through digital signal processing. Therefore, this study aimed to investigate the effects of hearing loss and hearing aid digital delay circuit on sound-induced flash illusion. Subjects and Methods: A total of 13 adults with normal hearing, 13 with mild to moderate hearing loss, and 13 with moderate to severe hearing loss were enrolled in this study. Subsequently, the sound-induced flash illusion test was conducted, and the results were analyzed. Results: The results showed that hearing aid digital delay and hearing loss had no detrimental effect on sound-induced flash illusion. Conclusions: Transmission velocity and neural transduction rate of the auditory inputs decreased in patients with hearing loss. Hence, the integrating auditory and visual sensory cannot be combined completely. Although the transmission rate of the auditory sense input was approximately normal when the hearing aid was prescribed. Thus, it can be concluded that the processing delay in the hearing aid circuit is insufficient to disrupt the integration of auditory and visual information.

Design of Acoustic Source Array Using the Concept of Holography Based on the Inverse Boundary Element Method (역 경계요소법에 기초한 음향 홀로그래피 개념에 따른 음원 어레이 설계)

  • Cho, Wan-Ho;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.260-267
    • /
    • 2009
  • It is very difficult to form a desired complex sound field at a designated region precisely as an application of acoustic arrays, which is one of important objects of array systems. To solve the problem, a filter design method was suggested, which employed the concept of an inverse method using the acoustical holography based on the boundary element method. In the acoustical holography used for the source identification, the measured field data are employed to reconstruct the vibro-acoustic parameters on the source surface. In the analogous problem of source array design, the desired field data at some specific points in the sound field was set as constraints and the volume velocity at the surface points of the source plane became the source signal to satisfy the desired sound field. In the filter design, the constraints for the desired sound field are set, first. The array source and given space are modelled by the boundary elements. Then, the desired source parameters are inversely calculated in a way similar to the holographic source identification method. As a test example, a target field comprised of a quiet region and a plane wave propagation region was simultaneously realized by using the array with 16 loudspeakers.

Prediction of the Dependence of Phase Velocity on Porosity in Cancellous Bone

  • Lee, Kang-Il;Choi, Min-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.2E
    • /
    • pp.45-50
    • /
    • 2008
  • In recent years, quantitative ultrasound (QUS) technologies have played a growing role in the diagnosis of osteoporosis. Most of the commercial bone somometers measure speed of sound (SOS) and/or broadband ultrasonic attenuation (EUA) at peripheral skeletal sites. However, the QUS parameters are purely empirical measures that have not yet been firmly linked to physical parameters such as bone strength or porosity. In the present study, the theoretical models for wave propagation in cancellous bone, such as the Biot model, the stratified model, and the modified Biot-Attenborough (MBA) model, were applied to predict the dependence of phase velocity on porosity in cancellous bone. The optimum values for the input parameters of the three models in cancellous bone were determined by comparing the predictions with the previously published measurements in human cancellous bone in vitro. This modeling effort is relevant to the use of QUS in the diagnosis of osteoporosis because SOS is negatively correlated to the fracture risk of bone, and also advances our understanding of the relationship between phase velocity and porosity in cancellous bone.

Active Structural Acoustical Control of a Smart Structure using Uniform Force Actuator and Array of Accelerometers (균일힘 액추에이터와 가속도계 배열을 이용한 지능구조물의 능동구조 음향제어)

  • ;Stephen J Elliott;Paolo Gardonio
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.368-373
    • /
    • 2003
  • This paper presents a study of low frequencies volume velocity vibration control of a smart panel in order to reduce sound transmission. A distributed piezoelectric quadratically shaped polyvinylidene fluoride (PVDF) polymer film is used as a uniform force actuator and an array of 4$\times$4 accelerometer is used as a volume velocity sensor for the implementation of a single-input single-output con rot system. The theoretical and experimental study of sensor-actuator frequency response function sho vs that this sensor-actuator arrangement provides a required strictly positive real frequency response function below about 900Hz. Direct velocity feedback could therefore be implemented with a limited gain which gives reductions of about 15㏈ in vibration level and about 8 ㏈ in acoustic power level at the (1, 1) mode of the smart Panel. It has been also shown that the shaping error of PVDF actuator could limit he stability and performance of the control system.

  • PDF

Effect of Sound Field on the Forced Convection Heat Transfer from an Isothermal Cylinder (음장이 등온원통으로부터의 강제대류 열전달에 미치는 영향)

  • 권영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.373-380
    • /
    • 1988
  • The effect of sound on the heat transfer from an isothermal cylinder in cross flow is investigated by numerical analysis. The modeling is made for the laminar incompressible flow fluctuating in the range of the Reynolds number, 5.leq.Re.leq.35, by the sinusoidal acoustic field. The instantaneous response of the flow and heat transfer is simulated for various frequencies. It is shown that the heat transfer amplitude decreases and the phase lags behind the flow velocity with increase in the frequency. The time-mean effects of the acoustic field on the flow field and heat transfer, known as the acoustic and thermoacoustic streaming, are analyzed. The time-mean heat transfer coefficients are decreased around the forward stagnation point but increased in the wake region. Such a local difference in heat transfer coefficients is a function of the frequency and becomes greatest at some frequency. However, with balance between the local increase and decrease, the overall heat transfer coefficient is almost unaffected by sound.

Spectral Estimation of the Pass-by Noise of an Acoustic Source (등속 이동 음원의 통과소음 스펙트럼 추정에 관한 연구)

  • Lim Byoung-Duk;Kim Deok-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1597-1604
    • /
    • 2005
  • The identification of a moving noise source is important in reducing the source power of the transport systems such as airplanes or high speed trains. However, the direct measurement using a microphone running with noise source is usually difficult due to wind noise, white the source motion distorts the frequency characteristics of the pass-by sound measured at a fixed point. In this study the relationship between the spectra of the source and the pass-by sound signal is analyzed for an acoustic source moving at a constant velocity. Spectrum of the sound signal measured at a fixed point has an integral relationship with the source spectrum. Nevertheless direct conversion of the measured spectrum to the source spectrum is ill-posed due to the singularity of the integral kernel. Alternatively a differential equation approach is proposed, where the source characteristics can be recovered by solving a differential equation relating the source signal to the distorted measurement in time domain. The parameters such as the source speed and the time origin, required beforehand, are also determined only from the frequency-phase relationship using an auxiliary measurement. With the help of the regularization method, the source signal is successfully recovered. The effects of the parameter errors to the estimated frequency characteristics of the source are investigated through numerical simulations.

Development of FE-SEA Hybrid Model for the Prediction of Vehicle Structure-borne Noise at Mid-frequencies (승용차량의 중주파수 대역 구조기인 소음예측을 위한 FE-SEA 하이브리드 모델 개발)

  • Yoo, Ji Woo;Chae, Ki-Sang;Charpentier, A.;Lim, Jong Yun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.606-612
    • /
    • 2014
  • Vehicle simulation models for noise and vibration prediction have been developed so far generally in two schemes. One is FE models generally used for problems below 200 Hz such as booming noise, and the other is SEA models for high frequencies of more than 1 kHz, representatively related to sound packages. There have been many researches to develop a simulation model for 200~1000 Hz, so-called mid-frequency region, and this paper shows one practical result that covers the trimmed body of a sedan vehicle. The simulation model is developed based on an FE model, and then FE elements at some areas are substituted with SEA elements to reduce DOFs. SEA panels are described by modal density, radiation efficiency, stiffness and damping characteristics that are found from some numerical assessments. Sound packages are modeled similarly as a conventional SEA model. The results obtained from the hybrid model were compared to experimental results. Predicted pressure and vibrational velocity generally show a good agreement. The developed simulation model and related technology are successfully being used in vehicle development process.