A heart sound algorithm, which separates the heart sound signal into four parts; the first heart sound, the systolic period, the second heart sound, and the diastolic period has been developed. The algorithm uses discrete intensity envelopes of approximations of the wavelet transform analysis method to the phonocard-iogram(PCG)signal. Heart sound a highly nonstation-ary signal, so in the analysis of heart sound, it is important to study the frequency and time information. Further more, Wavelet Transform provides more features and characteristics of the PCG signal that will help physician to obtain qualitative and quantitative measurements of the heart sound.
Heart sound segmentation into its components, S1, systole, S2 and diastole is the first step of analysis and the most important part in the automatic diagnosis of heart sounds. Conventionally, the Shannon energy envelope peak detection method has been popularly used due to its superior performance in locating S1 and S2. Recently, the HMM has been shown to be quite suitable in modeling the heart sound signal and its use in segmenting the heart sound signal has been suggested with some success. In this paper, we compared the two methods for heart sound segmentation using a common database. Experimental tests carried out on the 4 different types of heart sound signals showed that the segmentation accuracy relative to the manual segmentation was 97.4% in the HMM based method which was larger than 91.5% in the peak detection method.
Human hearing sensitivity is frequency-dependent. The sensitivity is low at both ends of the audible frequency, and the sensitivity is the highest in the middle band at 3000 Hz. The heart sound of a healthy person is concentrated at a low frequency of 200 Hz or less, and despite using a stethoscope, the hearing sensitivity of the human body is low, and the stethoscope sound is low. Amplifying the sound of the stethoscope is not effective in distinguishing heart sounds in noisy environments because it maintains the same signal-to-noise ratio. In this study, a method of enhancing auditory stimulation was developed by applying a method of moving the spectrum of auscultation sounds into a high-frequency region where the human body is highly sensitive to hearing. The spectrum of the auscultation sound was moved up by 500 Hz in the frequency domain, and an inverse fast Fourier transform (FFT) was performed to reconstruct the auscultation sound. The heart sounds reconstructed by moving the spectra were divided into the first heart and second heart sound components, as in the original heart sound, and it was confirmed that the intensity was large in the cochleagram representing auditory stimulation. Therefore, this study suggested that spectral shift is a method to enhance auditory stimulation during auscultation without increasing the intensity of the auscultation sound.
This paper presents the application of the wavelet transform analysis and the neural network method to the phonocardiogram (PCG) signal. Heart sound is a acoustic signal generated by cardiac valves, myocardium and blood flow and is a very complex and nonstationary signal composed of many source. Heart sound can be discriminated normal heart sound and heart murmur. Murmurs have broader frequency bandwidth than the normal ones and can occur at random position of cardiac cycle. In this paper, we classified the group of heart sound as normal heart sound(NO), pre-systolic murmur(PS), early systolic murmur(ES), late systolic murmur(LS), early diastolic murmur(ED). And we used the wavelet transform to shorten artifacts and strengthen the low level signal. The ANN system was trained and tested with the back- propagation algorithm from a large data set of examples-normal and abnormal signals classified by expert. The best ANN configuration occurred with 15 hidden layer neurons. We can get the accuracy of 85.6% by using the proposed algorithm.
최근에 디지털 선호처리와 전자부품의 발달로 심음 분식에 관한 많은 연구가 진행되고 있다. 그러나 심음 인식, 특히 심음 한주기 전체에 대한 인식연구는 거의 없다. 본 논문에서 심음 전체 한주기에 대한 새로운 인식 방법을 제안하였다. 먼저 주성분 분석을 이용하여 훈련 셋트로 데이터베이스를 구축한다. 데이터베이스는 새로운 심음입력을 인식하는데 이용된다. 심음은 정상심음, 수축전 심잡음, 수축초기 심잡음, 수축 말기 심잡음, 이완 초기 심잡음, 이완 말기 심잡음, 연속적 심잡음으로 분류된다. 실험결과 새로운 인식 방법은 심음의 특징을 인식하는데 효과적이었다. 최대 인식률은 NO의 경우 71%, PS와 ES의 경우 80%, LS의 경우 78%, ED의 경우 87%, LD의 경우 60%, CM의 경우 20% 이었다. 현재의 결과가 실제적으로 심음을 인식하기에는 충분하지 못하였지만 선음 전체 주기를 대상으로 한 연구라는데 의의가 있으며 더 효과적인 데이터베이스를 구축함으로써 인식률을 개선할 수 있다.
기존의 심음분류를 위한 연구들은 인공신경망을 이용하여 주로 이루어졌다. 그러나 심음신호의 통계적 특성을 분석 한 결과 HMM의 의한 신호모델링이 적합한 것으로 나타났다. 본 연구에서는 다양한 질병을 나타내는 심음신호를 HMM을 이용하여 모델링 하고 인식성능이 심음신호의 클러스터링에 따라서 많이 좌우되는 것을 알 수 있었다. 또한 실제 환경에서의 심음신호는 그 시작과 끝나는 시점이 정해지지 않은 연속신호이다. 따라서 HMM을 이용한 심음분류를 위해서는 연속적인 심음신호로부터 한 사이클의 분할된 심음을 추출할 필요성이 있다. 일반적으로 수동분할은 분할오류를 발생시키며 실시간 심음인식에 적합하지 않으므로 분할과정이 필요치 않는 ergodic형 HMM을 변형하여 사용할 것을 제안하였다. 그리고 제안된 HMM은 연속심음을 이용한 분류실험에서 매우 높은 성능을 보임을 알 수 있었다.
Stethoscopic auscultation is still one of the primary tools for the diagnosis of heart diseases due to its easy accessibility and relatively low cost. It is, however, a difficult skill to acquire. Many research efforts have been done on the automatic classification of heart sound signals to support clinicians in heart sound diagnosis. Recently, hidden Markov models (HMMs) have been used quite successfully in the automatic classification of the heart sound signal. However, in the classification using HMMs, there are so many heart sound signal types that it is not reasonable to assign a new class to each of them. In this paper, rather than constructing an HMM for each signal type, we propose to build an HMM for a set of acoustically-similar signal types. To define the classes, we use the KL (Kullback-Leibler) distance between different signal types to determine if they should belong to the same class. From the classification experiments on the heart sound data consisting of 25 different types of signals, the proposed method proved to be quite efficient in determining the optimal set of classes. Also we found that the class determination approach produced better results than the heuristic class assignment method.
청진에 의한 심음도법은 오래 전부터 진단에 이용되어 왔지만 심음 인식분야에서는 제 1심음, 제 2심음, 특정 판막의 운동과 같이 부분적 기능이나 동작 분석을 목적으로 심음의 일부 구간에 대한 인식 연구가 행하여졌을 뿐 심음 한 주기 전체를 대상으로 하는 심음 특징 인식에 대한 연구성과는 매우 미약하였다. 본 논문에서는 한 주기 동안의 전체 심음을 분석하여 파라메터를 추출하고 이를 이용하여 한 주기 심음 특성에 대한 인식방법을 제안하였다. 제안된 알고리즘은 시간영역에서 제 1심음과 제 2심 검출을 기반으로 한다. 알고리즘은 주요 구간을 추출하고 정점 위치, 구간 적분, 통계변수에 대한 분석을 통하여 심음을 분류한다. 심음을 정상, 수축초기 심잡음, 수축말기 심잡음, 이완 초기 심잡음, 이완 말기 심잡음, 연속적 심잡음으로 구분하였다. 시험 결과 평균 88% 의 평균 인식률을 얻어 제안된 알고리즘의 유용성을 확인하였다. 비정상 심음의 분류에 대한 오인식은 주로 수축초기의 심잡음인 경우로 나타났다.
Esophageal stethoscope is used for monitoring the heart sounds and breath sounds of patients during surgery under a general anesthesia. Recently, an electronic esophageal stethoscope (EES)[1] has been developed for the purpose of real-time monitoring these information visually. This system uses only a microphone as the sound sensor. A drawback of the EES system is that it may be difficult to distinguish the first sound ($S_1$) and the second sound ($S_2$) of heart, because their periods are irregular depending on patients. In this paper, we propose an improved EES system in which the infrasound is measured by adding a pressure sensor as well as a sound sensor. We investigate some correlations between the infrasound and characteristics of the heart sound. The proposed system has been tested on 15 patients. The results show that the new system is capable of detecting the first sound more reliably and easily determining the heart rate and breathing period.
본 논문에서는 심음에서 제 1심음(S1)과 제 2심음(S2)을 찾기 위한 새로운 알고리듬을 제안하였다. 심음의 주성분을 찾기 위한 기존의 알고리듬들은 심 잡음이 없는 정상 심음 신호에서는 높은 성능을 보이지만 심 질환에 의해 발생하는 심 잡음이 섞여 있는 신호에서는 현저한 성능저하를 보인다. 따라서 본 논문에서는 심 질환이 있는 심음에서 제 1심음과 제 2심음의 검출 성능 향상을 위해 3차 샤논 에너지 변화량을 이용한 알고리듬을 제안하였다. 제 1심음과 제 2심음의 에너지 변화량이 심 잡음에 비해 더 크게 나타나는 특징을 이용하여, 심 잡음을 감쇄시키고 제 1심음, 제 2심음을 검출하였다. 제안한 알고리듬은 정상 심음 뿐 아니라 대동맥 협착증, 승모판막 협착증과 같은 비정상 심음에서도 높은 검출 성능을 가질 수 있도록 개발하였으며 실험 결과 기존의 검출방법에 비하여 높은 검출 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.