• Title/Summary/Keyword: sound localization

Search Result 254, Processing Time 0.024 seconds

Study for Visualization of Rotating Sound Source Using Microphone Array (마이크로폰 어레이를 이용한 회전하는 소음원 가시화에 관한 연구)

  • Rhee, Wook;Park, Sung;Lee, Ja-Hyung;Kim, Jai-Moo;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.565-573
    • /
    • 2006
  • Acoustic analysis of a moving sound source required that the measured sound signals be do-Dopplerized and restored as of the original emission signals. The purpose of this research is development of beamforming technique can be applied to the rotor noise source identification. For the do-Dopplerization and reconstruction of emitted sound wave, Forward Propagation Method is applied to the time domain beamforming technique. And validation test were performed using rotating sound source constructed by bended pipe and horn driver. In the validation test using sinusoidal sound wave, sufficient performance of signal processing can be seen, and the effect of measuring duration for accuracy was compared. In the prop-rotor measurements, the acoustic source locations were successfully verified in varying positions for different frequencies and collective pitch angle, in hover condition.

Analyses on limitations of binaural sound based on the first order Ambisonics for virtual reality audio (1차 Ambisonics에 의해 생성되는 가상현실 오디오용 양이 사운드의 한계에 대한 분석)

  • Chang, Ji-Ho;Cho, Wan-Ho.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.6
    • /
    • pp.637-650
    • /
    • 2019
  • This paper analyzes the limitations of binaural sound that is reproduced with headphones based on Ambisonics for Virtual Reality (VR) audio. VR audio can be provided with binaural sound that compensates head rotation of a listener. Ambisonics is widely used for recording and reproducing ambient sound fields around a listener in VR audio, and the First order Ambisonics (FOA) is still being used for VR audio because of its simplicity. However, the maximum frequencies with this order is too low to perfectly reproduce ear signals, and thus the binaural reproduction has inherent limitations in terms of spectrum and sound localization. This paper investigates these limitations by comparing the signals arrived at ear positions in the reference field and the reproduced field. An incidence wave is defined as a reference field, and reproduced over virtual loudspeakers. Frequency responses, inter-aural level differences, and inter-aural phase differences are compared. The results show, above the maximum cut off frequency in general, that the reproduced levels decrease, and the horizontal localization can be provided only around the forward direction.

The Method for Localization of Sound Source by Using 3 Point-Dectectors (3점에 의한 음원의 거리와 도래각 추정법)

  • 이채봉
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1997.06a
    • /
    • pp.44-46
    • /
    • 1997
  • Near field 에서는 진폭 감쇄정보를 이용할 수 있으므로 음원의 거리와 도래각을 추정하는 것이 가능하다. 고정된 3개의 수음점에서 자기,상관 파워스펙트럼 분석을 하여 추정하는 원리와 추정치의 분포영역, 음원의 정위한계에 대하여 나타내었다.

  • PDF

Sound recognition and tracking system design using robust sound extraction section (주변 배경음에 강인한 구간 검출을 통한 음원 인식 및 위치 추적 시스템 설계)

  • Kim, Woo-Jun;Kim, Young-Sub;Lee, Gwang-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.8
    • /
    • pp.759-766
    • /
    • 2016
  • This paper is on a system design of recognizing sound sources and tracing locations from detecting a section of sound sources which is strong in surrounding environmental sounds about sound sources occurring in an abnormal situation by using signals within the section. In detection of the section with strong sound sources, weighted average delta energy of a short section is calculated from audio signals received. After inputting it into a low-pass filter, through comparison of values of the output result, a section strong in background sound is defined. In recognition of sound sources, from data of the detected section, using an HMM(: Hidden Markov Model) as a traditional recognition method, learning and recognition are realized from creating information to recognize sound sources. About signals of sound sources that surrounding background sounds are included, by using energy of existing signals, after detecting the section, compared with the recognition through the HMM, a recognition rate of 3.94% increase is shown. Also, based on the recognition result, location grasping by using TDOA(: Time Delay of Arrival) between signals in the section accords with 97.44% of angles of a real occurrence location.

A study on sound source segregation of frequency domain binaural model with reflection (반사음이 존재하는 양귀 모델의 음원분리에 관한 연구)

  • Lee, Chai-Bong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.3
    • /
    • pp.91-96
    • /
    • 2014
  • For Sound source direction and separation method, Frequency Domain Binaural Model(FDBM) shows low computational cost and high performance for sound source separation. This method performs sound source orientation and separation by obtaining the Interaural Phase Difference(IPD) and Interaural Level Difference(ILD) in frequency domain. But the problem of reflection occurs in practical environment. To reduce this reflection, a method to simulate the sound localization of a direct sound, to detect the initial arriving sound, to check the direction of the sound, and to separate the sound is presented. Simulation results show that the direction is estimated to lie close within 10% from the sound source and, in the presence of the reflection, the level of the separation of the sound source is improved by higher Coherence and PESQ(Perceptual Evaluation of Speech Quality) and by lower directional damping than those of the existing FDBM. In case of no reflection, the degree of separation was low.

Error Analysis of the Passive Localization Using Near-field Effect in the Sea (해양에서 근거리효과를 이용한 수동 위치추정 오차분석)

  • 박정수;최진혁
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.75-81
    • /
    • 2001
  • In this paper we analyzed the localization error of near-field detection algorithm in the sea. The near-field detection algorithms using triangulation and wavefront curvature basically assume a signal in two dimension of bearing and range. But the assumption causes localization error because there is three dimension of bearing, range, and depth in the sea. Even through three dimensional effect is considered, the localization error is occurred if multipath propagation in the sea is ignored. To analyze the localization error in the sea, we simulate the near-field localization using acoustic propagation model and focused beamforming considering wavefront curvature. The simulation results indicate that localization error always occurs in the sea and the error varied with sound velocity profile, water depth, bottom slope, source range, etc.

  • PDF

Efficient Individualization Method of HRTFs Using Critical-band Based Spectral Cue Control

  • Hur, Yoo-Mi;Park, Young-Cheol;Lee, Seok-Pil;Youn, Dae-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.167-180
    • /
    • 2011
  • Recently, 3-D audio technologies are commonly implemented through headphones. A major problem of the headphone-based 3-D audio is in-the-head localization, which occurs due to the inaccurate Head-Related Transfer Function (HRTF). Since the individual measurements of HRTFs are impractical, there have been several researches for HRTF customization. In this paper, an efficient method of customizing HRTFs for the sound externalization is proposed. Firstly, it is determined which part will be customized in HRTF through psychoacoustical experiments. Then, the method controlling spectral notches and envelopes to provide individual localization cues are described. Since the proposed method is based on a critical-band rate, the structure is much simpler than that of previous studies, but still effective. The performance was evaluated through a series of subjective tests, and the results confirmed that the customized HRTF using proposed method could replace the measured individual HRTF successfully.