• Title/Summary/Keyword: sound information

Search Result 1,716, Processing Time 0.027 seconds

Conversion of Image into Sound Based on HSI Histogram (HSI 히스토그램에 기초한 이미지-사운드 변환)

  • Kim, Sung-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.3
    • /
    • pp.142-148
    • /
    • 2011
  • The final aim of the present study is to develop the intelligent robot, emulating human synesthetic skills which make it possible to associate a color image with a specific sound. This can be done on the basis of the mutual conversion between color image and sound. As a first step of the final goal, this study focused on a basic system using a conversion of color image into sound. This study describes a proposed method to convert color image into sound, based on the likelihood in the physical frequency information between light and sound. The method of converting color image into sound was implemented by using HSI histograms through RGB-to-HSI color model conversion, which was done by Microsoft Visual C++ (ver. 6.0). Two different color images were used on the simulation experiments, and the results revealed that the hue, saturation and intensity elements of each input color image were converted into fundamental frequency, harmonic and octave elements of a sound, respectively. Through the proposed system, the converted sound elements were then synthesized to automatically generate a sound source with wav file format, using Csound.

Sound recognition and tracking system design using robust sound extraction section (주변 배경음에 강인한 구간 검출을 통한 음원 인식 및 위치 추적 시스템 설계)

  • Kim, Woo-Jun;Kim, Young-Sub;Lee, Gwang-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.8
    • /
    • pp.759-766
    • /
    • 2016
  • This paper is on a system design of recognizing sound sources and tracing locations from detecting a section of sound sources which is strong in surrounding environmental sounds about sound sources occurring in an abnormal situation by using signals within the section. In detection of the section with strong sound sources, weighted average delta energy of a short section is calculated from audio signals received. After inputting it into a low-pass filter, through comparison of values of the output result, a section strong in background sound is defined. In recognition of sound sources, from data of the detected section, using an HMM(: Hidden Markov Model) as a traditional recognition method, learning and recognition are realized from creating information to recognize sound sources. About signals of sound sources that surrounding background sounds are included, by using energy of existing signals, after detecting the section, compared with the recognition through the HMM, a recognition rate of 3.94% increase is shown. Also, based on the recognition result, location grasping by using TDOA(: Time Delay of Arrival) between signals in the section accords with 97.44% of angles of a real occurrence location.

지역교차로 교통사고 자동검지시스템 개선을 위한 교차로 제 음향특성의 해석

  • Cho, Eul-Soo;Go, Young-Gwon;Kim, Jae-Yee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.789-792
    • /
    • 2008
  • Actually, The present traffic accident detection system is subsisting limitation of accurate distinction under the crowded condition at intersection because the system depend upon mainly the image information at intersection and digital image processing techniques nearly all. To complement this insufficiency, this article aims to estimate the level of present technology and a realistic possibility by analyzing the acoustic characteristic of crash sound that we have to investigate for improvement of traffic accident detection rate at intersection. The skid sound of traffic accident is showed the special pattern at $1[kHz]{\sim}3[kHz}$ bandwidth when vehicles are almost never operated in and around intersection. Also, the frequency bandwidth of vehicle crash sound is showed sound pressure difference over 30[dB] higher than when there is no occurrence of traffic accident below 500[Hz].

  • PDF

A Study on Sound Synchronized Out-Focusing Techniques for 3D Animation (음원 데이터를 활용한 3D 애니메이션 카메라 아웃포커싱 표현 연구)

  • Lee, Junsang;Lee, Imgeun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.2
    • /
    • pp.57-65
    • /
    • 2014
  • The role of sound in producing 3D animation clip is one of the important factor to maximize the immersive effects of the scene. Especially interaction between video and sound makes the scene expressions more apparent, which is diversely applied in video production. One of these interaction techniques, the out-focussing technique is frequently used in both real video and 3D animation field. But in 3D animation, out-focussing is not easily implemented as in music videos or explosion scenes in real video shots. This paper analyzes the sound data to synchronize the depth of field with it. The novel out-focussing technique is proposed, where the object's field of depth is controlled by beat rhythm in the sound data.

A system for recommending audio devices based on frequency band analysis of vocal component in sound source (음원 내 보컬 주파수 대역 분석에 기반한 음향기기 추천시스템)

  • Jeong-Hyun, Kim;Cheol-Min, Seok;Min-Ju, Kim;Su-Yeon, Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.6
    • /
    • pp.1-12
    • /
    • 2022
  • As the music streaming service and the Hi-Fi market grow, various audio devices are being released. As a result, consumers have a wider range of product choices, but it has become more difficult to find products that match their musical tastes. In this study, we proposed a system that extracts the vocal component from the user's preferred sound source and recommends the most suitable audio device to the user based on this information. To achieve this, first, the original sound source was separated using Python's Spleeter Library, the vocal sound source was extracted, and the result of collecting frequency band data of manufacturers' audio devices was shown in a grid graph. The Matching Gap Index (MGI) was proposed as an indicator for comparing the frequency band of the extracted vocal sound source and the measurement data of the frequency band of the audio devices. Based on the calculated MGI value, the audio device with the highest similarity with the user's preference is recommended. The recommendation results were verified using equalizer data for each genre provided by sound professional companies.

교차로 사고음 검지시스템의 방해음향 조사연구

  • Kang, Hee-Koo;Go, Young-Gwon;Kim, Jae-Yee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.805-808
    • /
    • 2008
  • In this paper, it was performed the analysis on various intersection acoustic patterns for detection rate improvement of accident sound detection system : an acoustic pattern analysis on general traffic noise, an acoustic pattern analysis on engine noise, an acoustic pattern analysis on obstruct factors for accident sound detection system. There are remarkable differences between the acoustic patterns of traffic noise and accident sound, and we most consider the acoustic patterns when we compose the accident traffic detection system by acoustic because there is error range of 20[dB] according to the volume of traffic in intersection.

  • PDF

Stereo-10.2Channel Blind Upmix Technique for the Enhanced 3D Sound (입체음향효과 향상을 위한 스테레오-10.2채널 블라인드 업믹스 기법)

  • Choi, Sun-Woong;Hyun, Dong-Il;Lee, Suk-Pil;Park, Young-Cheol;Youn, Dae-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.5
    • /
    • pp.340-351
    • /
    • 2012
  • In this paper, we proposed the stereo-10.2channel blind upmix algorithm for the enhanced 3D sound. Recently, consumers want to enjoy better sound and the use of a various of multichannel configuration has been steadily improved. Thus, upmix algorithms have been researched. However, conventional upmix algorithms have the problem that distorts the spatial information of original source. To solve this problem and enhance the spatial sound quality, we proposed front and rear channel gain adjustment and 10.2 channel upmix algorithm for each additional channel. The listening test results show that it maintains spatial information of stereo input and enhances 3D sound effects unlike other conventional upmix algorithms.

The Phoneme Synthesis of Korean CV Mono-Syllables (한국어 CV단음절의 음소합성)

  • 안점영;김명기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.11 no.2
    • /
    • pp.93-100
    • /
    • 1986
  • We analyzed Korean CV mono-syllables consisted of concatenation of consonants/k, t, p, g/, their fortis and rough sound and vowels/a, e, o, u, I/by the PARCOR technique, and then we synthesized those speech by means of the phoneme synthesis controlling the analyzed data. In the speech analysis, the duration of consonants decreases in the rough sound, the lenis and the fortis in turns. And also the gain of them decreases in the same tendency. The pitch period increases more and more in vowels following the rough sound, the fortis and the lenis in turns. We synthesized the lenis and the fortis by controlling the duration and the gain of the rough sound, and vowels following the fortis and the rough sound by controlling the pitch period and the duration of vowels following the lenis. As the results, the synthesized speech quality is good and we make certain it is possible to make a rule to the phonome synthesis in Korea speech.

  • PDF

Investigating the Effects of Hearing Loss and Hearing Aid Digital Delay on Sound-Induced Flash Illusion

  • Moradi, Vahid;Kheirkhah, Kiana;Farahani, Saeid;Kavianpour, Iman
    • Journal of Audiology & Otology
    • /
    • v.24 no.4
    • /
    • pp.174-179
    • /
    • 2020
  • Background and Objectives: The integration of auditory-visual speech information improves speech perception; however, if the auditory system input is disrupted due to hearing loss, auditory and visual inputs cannot be fully integrated. Additionally, temporal coincidence of auditory and visual input is a significantly important factor in integrating the input of these two senses. Time delayed acoustic pathway caused by the signal passing through digital signal processing. Therefore, this study aimed to investigate the effects of hearing loss and hearing aid digital delay circuit on sound-induced flash illusion. Subjects and Methods: A total of 13 adults with normal hearing, 13 with mild to moderate hearing loss, and 13 with moderate to severe hearing loss were enrolled in this study. Subsequently, the sound-induced flash illusion test was conducted, and the results were analyzed. Results: The results showed that hearing aid digital delay and hearing loss had no detrimental effect on sound-induced flash illusion. Conclusions: Transmission velocity and neural transduction rate of the auditory inputs decreased in patients with hearing loss. Hence, the integrating auditory and visual sensory cannot be combined completely. Although the transmission rate of the auditory sense input was approximately normal when the hearing aid was prescribed. Thus, it can be concluded that the processing delay in the hearing aid circuit is insufficient to disrupt the integration of auditory and visual information.

A Study on Elemental Technology Identification of Sound Data for Audio Forensics (오디오 포렌식을 위한 소리 데이터의 요소 기술 식별 연구)

  • Hyejin Ryu;Ah-hyun Park;Sungkyun Jung;Doowon Jeong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.1
    • /
    • pp.115-127
    • /
    • 2024
  • The recent increase in digital audio media has greatly expanded the size and diversity of sound data, which has increased the importance of sound data analysis in the digital forensics process. However, the lack of standardized procedures and guidelines for sound data analysis has caused problems with the consistency and reliability of analysis results. The digital environment includes a wide variety of audio formats and recording conditions, but current audio forensic methodologies do not adequately reflect this diversity. Therefore, this study identifies Life-Cycle-based sound data elemental technologies and provides overall guidelines for sound data analysis so that effective analysis can be performed in all situations. Furthermore, the identified elemental technologies were analyzed for use in the development of digital forensic techniques for sound data. To demonstrate the effectiveness of the life-cycle-based sound data elemental technology identification system presented in this study, a case study on the process of developing an emergency retrieval technology based on sound data is presented. Through this case study, we confirmed that the elemental technologies identified based on the Life-Cycle in the process of developing digital forensic technology for sound data ensure the quality and consistency of data analysis and enable efficient sound data analysis.