• Title/Summary/Keyword: sound effect

Search Result 1,492, Processing Time 0.028 seconds

A Study on Field Evaluation and Sound Insulation Improvement of Door (도어 차음성능 현장 평가 및 개선방안에 관한 연구)

  • Oh, Jin Kyun;Lee, Won Yeul;Yum, Sung Gon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.11
    • /
    • pp.1012-1019
    • /
    • 2013
  • Recently, awareness of noise is increased and high performance sound insulation performance wall is designed. But in spite of installing high performance sound insulation performance wall, sound insulation performance in space is reduced by door. In this study, Sound insulation performance of doors which commonly used in buildings was measured to analyze current situation in the field and effect of method which increase sound insulation performance is analyzed quantitatively. As a result, sound insulation performance of doors which commonly used in buildings is FSTC 17~29 and can be increased about 2~3 dB by install rubber seal or mohair.

Floor Impact Sound and Vibration Characteristics Affected by the Compressive Strength of Concrete (콘크리트 슬래브 압축강도에 따른 바닥충격진동 및 소음특성)

  • Jeong, Jeong-Ho;Yoo, Seung-Yup;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.796-799
    • /
    • 2005
  • In 2005, a regulation on the heavy-weight impact sound was released, which restricted concrete slab thickness of standard floor to 210mm. To reduce heavy-weight impact sound, damping materials and structural reinforcement system have been proposed. In this study, the effect of compressive strength on the heavy-weight impact vibration and sound were investigated. FEM analysis was conducted for the 34PY apartment with different concrete strength (210, 350, 420kg/cm$^2$). In addition, apartment floors with different concrete strength were constructed and the floor impact vibration and sound were measured. Results of FEM analysis and measurement show that the resonance frequency of concrete slab was increased by the increment of concrete strength. However, floor impact sound pressure level did not decrease because the nor impact vibration and sound pressure level in 63Hz band increased.

  • PDF

Evaluation on Effect of Constitution of Timber Framed Floor on Insulation Performance Against Impact Sound by Field Measurements (현장실험을 통한 목조바닥의 구성요소가 충격음 차단성능에 미치는 영향 평가)

  • Park, Joo-Saeng;Lee, Sang-Joon;Kim, Se-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.431-444
    • /
    • 2012
  • Constituents of timber framed floor affect the insulation performance against impact sound significantly. Among them, installation of massive sound absorbing layer and reinforcement of stiffness of timber floor have been considered as major factors that improve the insulation performance against impact sound. Researches on evaluating the effect of floor constitutions have been carried out through the field measurements for timber framed buildings in Korea. It is concluded that the impact sound pressure level at the relatively lower frequency governs the overall insulation performance, and can be improved by the installation of sound absorbing layer and reinforcement of floor stiffness. Especially, the insulation performance against heavy impact sound was improved significantly when the massive cement mortar layer for floor heating system was installed and the stiffness was reinforced by shortening the joist span using additional beam at the mid-position of original span.

An attenuation effect of noise according to the direction of secondary sound source in duct ANC system (Duct ANC 시스템에서 2차음원 방향별 소음감소효과)

  • Lee, Hyung-Seok;Lee, Eung-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.497-502
    • /
    • 2008
  • In this paper, we studied on an attenuation effect of automobile exhaust noise according to the direction of secondary sound source in duct ANC system. Automobile exhaust noise was recorded at 800rpm. 3500rpm and 5000rpm of a diesel engine. Directions of loudspeaker(second sound source) can be exchanged to $30^{\circ}$, $90^{\circ}$ and $150^{\circ}$ against the primary noise flow by acrylic ducts to be made for experimentation. DSP board with TMS320C6416 chip of Texas Instrument Co used to control adaptive ANC system. This ANC system is based on the single-channel FxLMS algorithm. In experiment result, when the loud speaker direction was $150^{\circ}$, the attenuation effect showed largely. In case of $90^{\circ}$ duct, the noise was a little increased. In case of $30^{\circ}$ duct, the noise was a little increased or decreased according to the frequency range and the sound pressure(dB) of exhaust noise to comply with engine rpm.

  • PDF

Effect of Structure on the Sound Absorption and Sound Transmission Loss of Composite Sheet (복합시트의 구조가 흡·차음성에 미치는 영향)

  • Lee, Byung-Chan;Kim, Sung-Ryong
    • Composites Research
    • /
    • v.25 no.5
    • /
    • pp.154-158
    • /
    • 2012
  • The effect of structure on the sound absorption and sound transmission loss of composite sheet was investigated. A sheet of polypropylene was bonded by hot press with nonwoven fabric sheets of polyethylene terephthalate on the top side and the back side. Absorption coefficient of composite sheet using nonwoven fabric with surface density of $0.64kg/m^2$ was 0.1-0.2. It is 100-400% improvement compare to that of polypropylene sheet. The transmission loss of composite sheet was increased with surface density of polypropylene board and introduction of hemisphere hole on the surface of sheet. Two types of composite sheet were made using flat sheet and sine wave shaped sheet and the effect of sheet structure on the transmission loss was investigated.

The effect of internal sound field and resonator on radiating sound of King Song-Dok bell : proposing effective size of resonator (선덕 대왕 신종 내부 음장 및 울림통이 신종의 소리에 미치는 영향과 새로운 울림통 크기의 제안)

  • Kim, Yang-Han;Park, Soon-Hong;Kim, Sea-Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.60-67
    • /
    • 1997
  • the famous King Song-dok Bell which was cast in A.D. 771, during Silla dynasty has significant xize of concave cavity which acts as Helmholtz resonator on the ground. To see the effect of this cavity and the bell's internal acoustic cavity on radiating sound of bell, three dimensional measurement of internal sound field was performed. In this paper, the dtail measurement procedure and results are carefully addressed. The effect of the cavity on the radiating sound of bell is investigated using simple and physically representative model. A new size of cavity is proposed.

  • PDF

Vector Base Amplitude Panning Based Noise Control Method for Improving the Amenity in Building Environment (실내 환경에서 쾌적성 향상을 위한 Vector Base Amplitude Panning 기반의 소음제어)

  • Kwon, Byoung-Ho;Park, Young-Jin;Park, Youn-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.521-528
    • /
    • 2011
  • A variety of noise control methods have been developed as an interest on noise issues increases. Among them, noise control methods using masking effect, a phenomenon to reduce the ability to notice the unwanted sound by proper sound, to implement a pleasant sound environment have been studied under the name of soundscape. We proposed a novel vector base amplitude panning(VBAP) based noise control method to apply to the building environment. The proposed method could improve the amenity inside the building to reproduce the sounds with excellent masking effect on the incoming path of noise using the control speakers, considering the direction of noise source. The directional masking sounds can be generated by using VBPA technique. To verify the performance of the proposed method, we carried out the subjective test for the degree of amenity according to direction of the masking sound. Subjective test results showed that it is possible to improve the amenity inside the building by controlling the direction of masking sound considering the human's auditory characteristic.

An Analysis of the Flow Field and Radiation Acoustic Field of Centrifugal Fan with Wedge -The Prediction of the Scattered Sound Field- (웨지가 있는 원심 임펠러의 유동장 및 방사 음향장 해석(II) -원심홴의 산란 음향장 예측-)

  • Lee, Deok-Ju;Jeon, Wan-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.9
    • /
    • pp.1165-1174
    • /
    • 2001
  • The objective of this study is to understand the generation mechanism of sound and to develop a prediction method for the acoustic pressure field of a centrifugal fan. If the fan is operating at the free field without the casing, the acoustic analogy is a good method to predict the acoustic of the fan. But, the casing gives a dominant effect to the radiated sound field and the scattering effect of casing should be considered. So, in this paper the Kirchhoff-BEM is developed, which can consider the scattering effect of the rigid body. In order to consider the scattering and diffraction effects owing to the casing, BEM is introduced. The source of BEM is newly developed, so the sound field of the centrifugal fan can be obtained. In order to compare the predicted one with experimental data, a centrifugal impeller and a wedge are used in the numerical calculation and the results are compared with the experimental data. Reasonable results are obtained not only for the peak frequencies but also for the amplitudes of the tonal sound. The radiated acoustic field shows the diffraction and scattering effects of the wedge clearly.

The effect of leading tone and following tone with single frequency on sound lateralization (단일 주파수에서 선행음 및 후속음이 음원의 방향지각에 미치는 영향)

  • Lee, Chai-Bong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.3
    • /
    • pp.251-255
    • /
    • 2010
  • In this study, the effects leading and following tone with single frequency on sound lateralization were investigated. The tone with level difference and ISI(Inter Stimuli Interval) were used. The width of test tone was 2ms, leading tone and following tone were 10ms and 1kHz was used. The arrived time difference of subject's ears 0.5ms. We set four levels on each ISI and let them decide whether they hear the provided sound from left or right. As a result, it knew the fact that leading tone had more effect on sound lateralization than following tone.

Prediction Model of the Sound Transmission Loss of Honeycomb Panels for Railway Vehicles (철도차량용 허니콤재의 차음성능 예측모델)

  • Kim, Seock-Hyun;Paek, In-Su;Lee, Hyun-Woo;Kim, Jeong-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.5
    • /
    • pp.465-470
    • /
    • 2008
  • Sound transmission characteristics are investigated on the honeycomb panels used for railway vehicles. Equivalent orthotropic plate model and equivalent mass law are applied to predict the sound transmission loss (STL) of the honeycomb panels. The predicted values of the STL are compared with the measured values. The reliability and the limitation of the prediction models are investigated. Coincidence effect and local resonance effect on STL are considered. The result of the study shows that the equivalent orthotropic plate model can be used as a good prediction model, if the local resonance frequency is properly applied. finally, ways to improve the severe STL drop by local resonance are proposed and the effect on the sound insulation performance is analysed.