• 제목/요약/키워드: sound absorption material

검색결과 152건 처리시간 0.028초

다공패널형 공명기의 흡음성능에 관한 연구 (A Study on the Absorption Performance of a Perforated Panel type of Resonator)

  • 송화영;양윤상;이동훈
    • 설비공학논문집
    • /
    • 제28권6호
    • /
    • pp.224-231
    • /
    • 2016
  • When aiming to reduce the low frequency noise of a subway guest room through sound absorbing treatment methods inside the wall of a tunnel the resonator is often more effective than a porous sound absorbing material. Therefore, the perforated panel type resonator embedded with a perforated panel is proposed. The perforated panel is installed in the neck, which is then extended into the resonator cavity so that it can ensure useful volume. The absorption performance of the perforated panel type of resonator is obtained by acoustic analysis and experiment. The analytical results are in good agreement with the experimental results. In the case of multiple perforated panel type resonators, as the number of perforated panels increase, the 1st resonance frequency is moved to a low frequency band and sound absorption bandwidth is extended on the whole. In order to obtain excellent absorption performance, the impedance matching between multi-panels should be considered. When the perforated panel in the resonator is combined with a porous material, the absorption performance is highly enhanced in the anti-resonance and high frequency range. In case of the resonator inserted with perforated panels of 2, the 2nd resonance frequency is shifted to a low frequency band in proportion to the distance between perforated panels.

탄화 중밀도섬유판을 이용한 목재흡음판 개발 (Developing of Sound Absorption Composite Boards Using Carbonized Medium Density Fiberboard)

  • 이민;박상범;변희섭;김종인
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권6호
    • /
    • pp.714-722
    • /
    • 2014
  • 선행연구에서 다양한 목질 보드류를 열분해하여 다공질 탄화보드 제조에 성공하였고, 높은 난연성, 전자파차폐성, 원적외선방사, 폼알데하이드 흡착성, 흡음성능을 확인하였다. 본 연구에서는 경제성과 흡음성이 뛰어난 탄화 중밀도 섬유판(MDF)을 선택하여 보다 높은 흡음성능을 부여하기 위해 다른 흡음재료에도 사용 중인 샌딩처리와 타공기법을 시도하였다. 또한 개선된 흡음성능을 바탕으로 실제 음향판을 제작하여 그 음향적 효과를 파악하였다. 탄화 MDF를 십자모양(타공 5개), 직사각형모양(타공 9개), 일자모양(타공 5개)으로 타공 처리한 후, 흡음률을 측정한 결과, 무처리 탄화 MDF의 흡음률은 14% 정도를 나타내었고, 직사각형모양 타공 시편이 16.01%로 흡음률이 가장 높았고 십자모양 타공 시편이 15.68%, 일자 타공 시편은 14.25%의 흡음률을 나타내어 그 효과가 미미하였다. 반면에, 탄화 MDF의 표면을 각 1, 2, 3 mm로 표면샌딩 처리후 흡음률을 측정한 결과, 무처리 시편(13%)에 비해 65% 증가한 21.7% (1 mm 샌딩), 21.83% (2 mm 샌딩), 19.37% (3 mm 샌딩)를 확인하였다. 이 결과를 바탕으로 실대형 탄화보드 복합 음향판을 제작하였으며 잔향실법으로 흡음시험한 결과 감음계수 0.45로 높은 흡음성능을 발휘하여 상업화도 가능할 것으로 판단된다.

Sound Absorbing Melamine Foam: A Strong Environmental Friendly Tendency Opposing Glass Fiber of Room Using in China

  • Yan, Xiang
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2010년도 춘계학술대회 논문집
    • /
    • pp.462-462
    • /
    • 2010
  • Glass fiber is widely used in architectural acoustics or building acoustics for sound absorption since it was introduced into China for about 50 years. But recent years, with people pay more attentions to the air cleansing and their health which may be affected by the tiny fiber of the glasswool, a voluntary tendency opposing glass fiber of room using is gradual appeared in China. This paper discusses both the main opinions towards the question whether there are harmful impacts on people health from glassfiber, and the application circumstance of it's applying in china. This paper focuses on another substitute sound absorbing material, melamine foam, to discuss the strong environmental friendly tendency opposing glass fiber of room using in China now.

  • PDF

목재수피 파티클의 흡음율과 음향투과손실 (Sound Absorption Rate and Sound Transmission Loss of Wood Bark Particle)

  • Kang, Chun-Won;Jang, Eun-Suk;Jang, Sang-Sik;Kang, Ho-Yang;Kang, Seog-Goo;Oh, Se-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권4호
    • /
    • pp.425-441
    • /
    • 2019
  • 목재수피의 음향성능을 파악하고자 6가지 수종의 목재수피를 삭편으로 절삭하여 몇 가지 비중조건과 두께로 만든 후 흡음율과 음향투과손실을 전달함수법과 전달행렬법으로 각각 측정하였다. 그 결과, 편백나무수피가 두께 100 mm 일 때의 100-6400 Hz 평균흡음율은 0.90이며 두께 50 mm 일때의 100-6400 Hz 평균흡음율은 0.84이다. 특히 두께 100 mm 일 때의 경우, 1 KHz의 주파수영역에서의 흡음율은 약 100%에 근접하는 높은 흡음율을 나타내었다. 음향투과손실은 측정주파수범위에서 편백나무수피는 500 Hz에서 15.30 dB의 투과손실을 나타내었고 1000 Hz 수치는 15.73 dB이었다. 10 mm 두께의 합판을 수피파티클 배면에 추가한 후에는 투과손실이 20-30 dB 증가하였다. 목재수피는 친환경적이면서 기존의 석고보드보다 흡음율이 높고 음향투과손실이 크게 나타나서 음향성능이 우수한 건축재료로 고려될 수 있다고 생각된다.

다공성 흡음재가 조합된 다중 다공판 시스템의 흡음성능에 관한 연구 (A Study on the Sound Absorption of Multiple Layer Perforated Plate Systems Combined with Porous Absorbing Materials)

  • 허성욱;김욱;이동훈;권영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.896-901
    • /
    • 2002
  • The sound absorption coefficients for multiple layer perforated plate systems containing several compartments with airspaces and porous absorbing materials are estimated using the transfer matrix method developed in the previous paper. The absorption coefficients from transfer matrix method agree well with the values measured by the two-microphone impedance tube method for various combinations of perforated plates, airspaces or porous materials. Based on these results, a guidance for the design of multiple layer perforated plate systems combined with airspaces and porous absorbing materials is discussed in detail.

  • PDF

흡음재가 조합된 헬름홀츠 공명기의 흡음성능 (Sound Absorption Performance of a Helmholtz Resonator combined with Porous Materials)

  • 이영철;이선기;송화영;이동훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.280-285
    • /
    • 2008
  • The helmholtz resonator with the perforated neck has demerits that the absorption performance is not so outstanding in an anti-resonance frequency and high frequency bandwidth. In order to overcome these problems, in the paper, a resonator combined with porous material is proposed. The absorption performances of resonators are measured by two-microphone method and estimated by transfer matrix method. The experimentally measured values of normal absorption coefficients agree well with the corresponding values from the transfer matrix method. Because of the porous material, it is shown that the absorption performance have been significantly improved in the anti-resonance frequency and high frequency bandwidth.

  • PDF

흡음재가 조합된 헬름홀츠 공명기의 흡음성능에 관한 연구 (A Study on the Sound Absorption Performance of a Helmholtz Resonator Combined with Porous Materials)

  • 이동훈;송화영
    • 한국소음진동공학회논문집
    • /
    • 제19권6호
    • /
    • pp.628-633
    • /
    • 2009
  • The helmholtz resonator with the perforated neck has demerits that the absorption performance is not so outstanding in an anti-resonance frequency and high frequency bandwidth. In order to overcome these problems, in the paper, a resonator combined with porous material is proposed. The absorption performances of resonators are measured by two-microphone method and estimated by transfer matrix method. The experimentally measured values of normal absorption coefficients agree well with the corresponding values from the transfer matrix method. Because of the porous material, it is shown that the absorption performance have been significantly improved in the anti-resonance frequency and high frequency bandwidth.

An Experimental Study on the Absorption Property of Slit Absorbers with Composite Details

  • Jeong, Dae-Up;Joo, Moon-Ki
    • The Journal of the Acoustical Society of Korea
    • /
    • 제21권2E호
    • /
    • pp.81-90
    • /
    • 2002
  • Single absorbing materials and Helmholtz resonators have limited absorption characteristics over limited frequency ranges due to their structures and properties. Porous materials are highly absorptive for mid and high frequency ranges, while they have little sound absorption for low frequency sounds. Helmholtz resonators are generally used to absorb sound energy for a specified frequency range. Hence they have limited capability in controlling the overall acoustic properties of a space. Not much has been known about useful finishing materials which have enough rigidity and absorption over broad frequency range, in spite of wide demands from acoustic designers and consultants. The present work measured and analyzed absorption characteristics of a slit absorber by varying surface materials, depths of air gap, dimensions of slat and slit widths. It was found that the narrower the slit width, the larger the absorptions over the wide frequency ranges and the pattern was dependent on the presence of porous material. Narrower slat's width tend to increase the slit absorber's absorption more or less. Absorption coefficients at low frequency ranges were dramatically improved (from 0.23 to 0.56) by increasing air gap when porous materials were present.

공기층을 갖는 공조덕트 구조물에서 흡음재의 흡음특성에 관한 연구 (A Study on the Absorption Characteristics of Absorbents in Duct System with the Air Cavity)

  • 김찬묵;김도연;방극호
    • 소음진동
    • /
    • 제10권5호
    • /
    • pp.892-897
    • /
    • 2000
  • In this paper, experimental methods to find acoustic characteristics of acoustically treated air-conditioning duct system are proposed. Existing methods to analyze acoustic properties of duct with absorbent material have dilemma which has to assume the wave in duct to be a plane wave. Under this assumption. applicable frequency limitation makes accurate analysis of practical air-conditioning system impossible. In order to analyze the properties of in-lined treated absorbent with high degree of accuracy, in this experiments the range of exciting frequency of sound source is broadband, which means that source speaker excited higher mode of in-duct sound field. Also, to define the relations of air cavity to the acoustic characteristics, acoustic experiments on ducts with air cavity of different depth are operated. In conclusion, air-cavity makes the absorbing ability of duct improved in low frequency range. Due to the interactions between the air cavity depth and the depth of absorbents, according to depth of cavity, the magnitude of absorption coefficients vs frequencies in specific range is changed. In lower frequency range, the absorption of sound energy by air cavity is more dominant than by absorbent itself, in higher range, the inversion is true.

  • PDF

경량화 콘크리트에서 기포제의 함량에 따른 흡음특성에 관한 연구 (The Study on Sound Absorption According to Content of Foaming Agent In Lightweight Concrete)

  • 홍도관;안찬우;강진구;우병철;최재기;강헌찬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.955-958
    • /
    • 2006
  • The purpose of this study is to find ways of recycling a great amount of gypsum as by-product from the manufacture of phosphate fertilizer. For the purpose, this researcher investigated physical properties of light weight Porous material using waste gypsum and a foaming agent, Sodium n-dodecyl Sulfate to utilize it as a interior material of construction. To determine such properties, the study examined pore size distribution and pore rate in accordance with contents of Sodium n-dodecyl Sulfate added. Then expanded vermiculite as light-weight aggregate was also added, when pore size distribution, pore rate and sound absorption rate were surveyed and measured.

  • PDF