• Title/Summary/Keyword: sorption characteristics

Search Result 240, Processing Time 0.027 seconds

Evaluation of Moisture Sorption Characteristics in Polymer Material (고분자 소재에서 흡습 특성의 평가)

  • Park, Hee-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1297-1303
    • /
    • 2012
  • In this paper, the standard procedures for measuring the moisture sorption properties of thin polymeric materials such as polyethylene terephthalate (PET) by using the thermo-gravimetric method to characterize the moisture diffusion in the polymer are presented, and the sorption properties are quantified. The moisture diffusivity and solubility are characterized to investigate the effect of temperature and humidity on the moisture sorption properties according to the Arrhenius equation. The validation of the obtained sorption properties using thermogravimetry is discussed with the measured permeability based on Fickian diffusion. The nonlinear behavior of the concentration dependent moisture diffusion is investigated experimentally, and the nonlinearity is characterized numerically for the case of having an interface with an inorganic material such as a metal. The Fickian/Non-Fickian model based on the obtained moisture sorption properties is compared and discussed.

Influence of Organic Matter and Temperature on the Sorption of Volatile Organic Compounds on Soil (토양 흡착에 대한 유기탄소와 온도의 영향)

  • 김희경
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.57-59
    • /
    • 1998
  • The headspace method has been acknowledged as a cost-effective and convenient method to analyze volatile organic compounds(VOCs) in soil. The headspace analysis is based on equilibrium partitioning of VOCs among water, air and soil in a closed system. However, the headspace method cannot be applied to soils where most of the VOCs remain sorbed even at high temperature. In this study, it was investigated how the sorption characteristics of VOCs varied with soil with different organic carbon contents and temperature. This study showed that all the VOCs were volatilized, not sorved, only in the soil with 5% organic carbon at 45$^{\circ}C$ or higher. Some fraction of VOCs remained in soil with 8% organic carbon at $65^{\circ}C$ of higher. Most of the VOCs remained sorbed in soil with 12% organic content even at 95$^{\circ}C$. This result suggested that the headspace method can be applied only to soils with little organic carbon content (less than 5%). In this case, 45$^{\circ}C$ seems to be high enough to volatilize all the VOCs from soil. Large particles still showed a significant sorption capacity for VOCs from soil. Large Particles still showed a significant sorption capacity for VOCs despite of their low level of organic carbon content. It was also shown that the organic carbon sorption coefficients (Koc) of VOCs varied with soils with different organic carbon content. This suggests that not only the organic matter content of soil but also the property of the organic matter in soil influence the sorption of VOCs to soil.

  • PDF

Attenuation of Chlorinated Pesticides(2,4-D, atrazine) Using Organoclays (유기점토를 이용한 유기염소계 농약(2,4-D, atrazine) 오염 저감)

  • Choi, Ji-Yeon;Shin, Won-Sik
    • Journal of Environmental Science International
    • /
    • v.20 no.2
    • /
    • pp.185-197
    • /
    • 2011
  • Sorption of chlorinated pesticides such as 2,4-dichlorophenoxyacetic acid (2,4-D) and atrazine onto natural clays (montmorillonite and zeolite) modified with cationic surfactant, hexadecyltrimethyl-ammonium (HDTMA) and a natural soil was investigated using batch adsorbers. The clays were transformed from hydrophilic to hydrophobic by the cation exchange between clay surface and HDTMA up to 100% of the cation exchange capacity (CEC). Physicochemical characteristics of the sorbents such as pH, PZC (point of zero charge), organic carbon content ($f_{oc}$), fourier transform infrared spectroscopy (FT-IR), differential thermogravimetric analysis (DTGA) and X-ray diffraction (XRD) were analyzed. Sorption isotherm models such as Freundlich and Langmuir were fitted to the experimental data, resulting Langmuir model ($R^2$ > 0.986) was fitted better than Freundlich model ($R^2$ > 0.973). Sorption capacity ($Q^0$) for 2,4-D and atrazine was in the order of HDTMA-montmorillonite > HDTMA-zeolite > natural soil corresponding to the increase in organic carbon content ($f_{oc}$). The sorption of the pesticides was also affected by pH. The sorption of 2,4-D decreased with the increase in pH, whereas that of atrazine was not changed. This indicated that the sorption capacity ($Q^0$) of 2,4-D and atrazine was not affected by the solution pH because they exist as anionic (deprotonated) forms at pH above pKa. The results indicate that organoclay has a promising potential to reduce chlorinated pesticides in the effluent from golf courses.

Sorption Characteristics of Butanol/Water and Isopropanol/Water Solutions on the FASs Coated Inorganic Membrane (FASs로 코팅한 무기막에 대한 부탄올/물, 이소프로판올/물 용액의 수착 특성)

  • Lee, Kwang-Rae
    • Membrane Journal
    • /
    • v.28 no.5
    • /
    • pp.320-325
    • /
    • 2018
  • The sorption amounts of butanol/water and isopropanol/water solution on the surface modified with FASs (fluoroalkylsilanes) hydrophobic membrane were measured and analyzed using Hansen's solubility parameters. The difference of the solubility parameter of butanol (${\delta}_t=20.4$) and that of the surface modified with FASs hydrophobic membrane (${\delta}_t=16.9$) was greater than the case of isopropanol (${\delta}_t=24.6$), which might explain the result that the sorption amount of butanol was much higher than that of isopropanol. We might also explain the effect of the polar force (${\delta}_p$) on the sorption amount. The difference (${\Delta}$) between FASs polar force (${\delta}_p=4.6$) and butanol polar force (${\delta}_p=6.3$) was much smaller than that between FASs polar force (${\delta}_p=4.6$) and isopropanol polar force (${\delta}_p=9.0$), which meant that the interaction of butanol-FASs was much greater than that of isopropanol-FASs, and resulted in greater sorption amount of butanol on the FASs. This study showed Hansen's solubility parameters might be used for analysis of sorption characteristics of alcohol on membrane and solubility of solute in solvent.

Soil Properties Affecting C-type slope as a Parameter for Silica Sorption of Soils (토양의 규산 흡착 지표인 C-type slope에 영향을 미치는 토양 특성)

  • Lee, Sang Eun;Lim, Woo Jin;Ahn, Jae Ho;Kim, Jeong-Gyu;Lim, Soo-Kil
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.6
    • /
    • pp.365-370
    • /
    • 2004
  • To invesligate the characteristics of silica sorption on soils silica sorption experiments were conducted with 9 soils at 4 pH levels (5, 6, 7, and 8). Silica sorption increased in great extent with increase of pH. At the same pH level silica sorption increased linearly with increase of equilibrium $SiO_2$ concentration. Silica sorption characteristics was C-type. The C-type slope, i.e., the slope of linear regression of silica sorption isotherm, increased exponentially with increase of pH in all soils. Log(C-type slope) increased linearly with increase of pH in all soils. The slopes of linear regression were similar in most soils from 0.29 to 0.34 except Sachon and Jonggog soil. None of the soil properties showed any correlation with the slope of linear regression of Log(C-type slope) to pH. Only $Fe_o$ (oxalate extractable Fe oxides) was significantly correlated with the Log(C-type slope) at pH 7 in simple correlation analysis, and was shown to be the principal contributor as determined by standardized multiple linear regression.

Relationship between Moisture Barrier Properties and Sorption Characteristics of Edible Composite Films

  • Ryu, Sou-Youn;Rhim, Jong-Whan;Lee, Won-Jong;Yoon, Jung-Ro;Kim, Suk-Shin
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.68-72
    • /
    • 2005
  • Moisture sorption characteristics of edible composite films were determined and compared against moisture barrier properties. Edible composite films were Z1 (zein film with polyethylene glycol(PEG) and glycerol), Z2 (zein film with oleic acid), ZA1 (zein-coated high amylose corn starch film with PEG and glycerol), and ZA2 (zein-coated high amylose corn starch film with oleic acid). Z2 film showed the lowest equilibrium moisture content (EMC), monolayer value ($W_m$), water vapor permeability (WVP), and water solubility (WS). Surface structure of Z2 was relatively denser and finer than that of other edible films. GAB $W_m$ and C values decreased, while K values increased with increasing temperature. Correlation coefficients of WS:EMC and WVP:EMC at Aw 0.75 were higher than those of WS: $W_m$ and WVP: $W_m$, respectively. EMC values at Aw 0.75 appeared useful for evaluating or predicting moisture barrier properties of edible films.

Permeation Characteristics of Water Vapor Through PVA/PSSA_MA/THS-PSA Membranes (PVA/PSSA-MA/THS-PSA 막의 수증기 투과특성에 관한 연구)

  • Rhim, Ji-Won;Cho, Hyun-Il;Kim, Dae-Hoon;Ha, Seong-Yong;Nam, Sang-Yong
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.140-145
    • /
    • 2007
  • In this study, 3-(trihydroxysilyl)-1-propanesulfonic acid (THS-PSA) was added to poly(vinyl alcohol) (PVA) membranes crosslinked with poly(styrene sulfonic acid-co-maleic acid) (PSSA_MA) to improve the separation characteristics toward water vapors in the air. The prepared membranes varying both PSSA_MA and THS-PSA amounts were also synthesized at different cross linking temperatures. Then, in order to investigate the separation characteristics of the resulting membranes, the dynamic vapor sorption (DVS) and vapor permeation experiments were carried out. The increase of cross-linking temperature showed longer time to reach the equilibrium sorption state from the dynamic vapor sorption experiments. PVA/PSSA_MA (3%)/THA-PSA(7%) prepared at $120^{\circ}C$ gave the highest permeability of 480 barrer at $35^{\circ}C$.

Browning and Sorption Characteristics of Garlic Powder with Relative Humidity and Storage Temperature (상대습도와 저장온도에 따른 마늘가루의 갈변 및 흡습특성)

  • Kim, Hyun-Ku;Jo, Kil-Suk;S.Hawer, Woo-Derck;Shin, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.399-404
    • /
    • 1988
  • The sorption characteristics of garlic powder stored at various relative humidities and storage temperatures were studied. At lower relative humidity below RH 51%, the sorption equilibrium was easily attained, whereas at higher relative humidity above RH 67%, the powders were browned by higher equilibrium moisture content. The powders were browned at relative humidity above 67% at $20^{\circ}C\;and\;35^{\circ}C,\;above\;84%\;at\;5^{\circ}C$, respectively. The moisture contents of monolayer value for the powder were ranged from 5.53%(DB) to 5.92% (DB) with varying temperatures. And the necessity of moistureproof packaging material suggested for the long term storage of the powder because the lower moisture content and storage temperature, the higher driving force of wetting.

  • PDF

Effect of Dextrin on Sorption Characteristics and Quality of Vacuum Frying Dried Carrot (감압유탕 건조당근의 흡습특성 및 품질에 미치는 덱스트린의 영향)

  • Rhee, Chul;Cho, Seung-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.241-247
    • /
    • 1991
  • The objective of this experiment was to study the effect of dextrin on vacuum frying dried carrots. The concentrations of dextrin solution were 0%, 10%, 20%, 30% and the criteria for quality evaluation were sorption characteristics, rehydration power, color and crispness differences. The sorption characteristics were evaluated by Peleg's equation. Rehydration, color and crispness were determined by rehydration percentage, colorimetry and sensory evaluation, respectively. The dextrin pretreatment of carrot resulted in the reduction of adsorption rate and the equilibrium moisture content of dried carrot at various range of relative humidities, and the adsorption rate of samples pretreated with aqueous dextrin solution at different temperatures($4^{\circ}C,\;20^{\circ}C,\;30^{\circ}C$) were in the following decreasing order : control>10% dextrin>20% dextrin>30% dextrin. As the concentration of dextrin solution and ambient temperature increased, BET monomolecular layer moisture content decreased significantly. In addition, as the concentration of dextrin solution increased, the crispness intensity increased and the color of sample treated with 20% dextrin solution was similar to that of raw carrot.

  • PDF

Sorption Characteristics of Arsenic on Furnace Slag by Adsorption Isotherm and Kinetic Sorption Experiments (등온 및 동적 흡착 실험을 통한 제강 슬래그의 비소 흡착 특성)

  • Oh, Cham-Teut;Rhee, Sung-Su;Igarashi, Toshifumi;Kon, Ho-Jin;Lee, Won-Taek;Park, Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.9
    • /
    • pp.37-45
    • /
    • 2010
  • Sorption characteristics of arsenic on furnace slag were investigated to remove arsenic from groundwater using furnace slag, which is industrial waste generated from steel company. Adsorption isotherm experiments and kinetic sorption experiments were performed and the chemical characteristics of supernatants from these experiments were analyzed. Results showed that all supernatants were alkaline (above pH 9) and the highest ion concentration in the solution was found with calcium (30~50 mg/L). Results of adsorption isotherms were more adequately described by the Freundlich model than Langmuir model. From adsorption isotherms experiments, it was noted that the adsorption amount of As(V) was 87% higher than that of As(III). Results of kinetic sorption experiments were more properly fitted by pseudo second order (PSO) model than pseudo first order model. Equilibrium adsorption amount ($q_e$) and relaxation time ($t_r$) calculated from PSO model increased with initial concentration of arsenic. Equilibrium adsorption amount of As(V) was higher than that of As(III) and relaxation time of As(V) was shorter than that of As(III). Adsorption isotherm results could be predicted by kinetic adsorption results, since equilibrium adsorption amount calculated through PSO model generally agreed with equilibrium adsorption amount measured from adsorption isotherm.