• Title/Summary/Keyword: sorbents

Search Result 180, Processing Time 0.026 seconds

Competitive Adsorption of CO2 and H2O Molecules on the BaO (100) Surface: A First-Principle Study

  • Kwon, Soon-Chul;Lee, Wang-Ro;Lee, Han-Na;Kim, J-Hoon;Lee, Han-Lim
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.988-992
    • /
    • 2011
  • $CO_2$ adsorption on mineral sorbents has a potential to sequester $CO_2$. This study used a density functional theory (DFT) study of $CO_2$ adsorption on barium oxide (BaO) in the presence of $H_2O$ to determine the role of $H_2O$ on the $CO_2$ adsorption properties on the ($2{\times}2$; $11.05\;{\AA}{\times}11.05\;{\AA}$) BaO (100) surface because BaO shows a high reactivity for $CO_2$ adsorption and the gas mixture of power plants generally contains $CO_2$ and $H_2O$. We investigated the adsorption properties (e.g., adsorption energies and geometries) of a single $CO_2$ molecule, a single $H_2O$ molecule on the surface to achieve molecular structures and molecular reaction mechanisms. In order to evaluate the coordinative effect of $H_2O$ molecules, this study also carried out the adsorption of a pair of $H_2O$ molecules, which was strongly bounded to neighboring (-1.91 eV) oxygen sites and distant sites (-1.86 eV), and two molecules ($CO_2$ and $H_2O$), which were also firmly bounded to neighboring sites (-2.32 eV) and distant sites (-2.23 eV). The quantum mechanical calculations show that $H_2O$ molecule does not influence on the chemisorption of $CO_2$ on the BaO surface, producing a stable carbonate due to the strong interaction between the $CO_2$ molecule and the BaO surface, resulting from the high charge transfer (-0.76 e).

Comparison between the liquid-liquid partition method and modified QuEChERS method for the analysis of pesticide residues in beef fat (소지방 중 잔류농약분석을 위한 액-액분배법과 modified QuEChERS법 비교)

  • Kim, Yoen-Joo;Choi, Yoon-Hwa;Shin, Bang-Woo;Lee, Jung-Hark
    • Korean Journal of Veterinary Service
    • /
    • v.34 no.4
    • /
    • pp.429-439
    • /
    • 2011
  • This article described the comparison of a quick, easy, cheap, effective, rugged and safe (QuEChERS) sample preparation and the classical method established by National Veterinary Research and Quarantine Service (NVRQS) for the determination of pesticide residues in livestock products using GC-tandem mass spectrometry. The classical method by NVRQS used liquid-liquid partioning followed by evaporizing. The modified QuEChERS entailed extraction of 2 g sample with 15 ml acetonitrile containing 1% acetic acid followed by addition of 6 g anhydrous magnesium sulfate and 1.5 g sodium acetate. After centrifugation, 6 ml of the extract underwent a cleanup step (in a technique known as column-based solid phase extraction) using 400 mg each of $C_{18}$ and primary secondary amine sorbents plus 1,200 mg magnesium sulfate. The quantitation of individual pesticides by both methods was based on tissue standard calibration curves with a correlation coefficient in excess of 0.98 for the 24 pesticides. The detection limits by the classical method were ranged 1.3~5.0 ${\mu}g$/kg, with mean recoveries between 76.2% and 114.3% except aldrin (59.3%) and deltamethrin (63.6%). The detection limits by modified QuEChERS were ranged 0.3~6.2 ${\mu}g$/kg, with mean recoveries between 68.0% and 114.3% except dimethipin (152.6%), chlorfenvinphos (138.1%), 4,4-DDT (61.5%), aldrin (60.4%) and chinomethionate (30.3%).

Adsorption Characteristics of Cd, Cu, Pb and Zn from Aqueous Solutions onto Reed Biochar

  • Choi, Ik-Won;Kim, Jae-Hoon;Lee, Soo-Hyung;Lee, Jae-Kwan;Seo, Dong-Cheol;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.489-494
    • /
    • 2016
  • Carbon-based sorbents such as biochar and activated carbon have been proven to be cost-effective in removing pollutants containing heavy metals from wastewater. The aim of this study was using batch experiment to evaluate the adsorption characteristics of heavy metals in single-metal conditions onto reed biochar for treating wastewater containing heavy metals. The removal rates of heavy metals were in the order of Pb > $Cu{\fallingdotseq}Cd{\fallingdotseq}Zn$, showing the adsorption efficiency of Pb was higher than the other heavy metals. Freundlich and Langmuir adsorption isotherms were used to model the equilibrium adsorption data obtained from adsorption of Pb on reed biochar. For reed biochar, the Langmuir model provided a slightly better fit than the Freundlich model. Lead was observed on the biochar surface after adsorption by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The main functional groups of reed biochar were aromatic carbons. Overall, the results suggested that reed biochar could be useful adsorbent for treating wastewater containing Pb.

Enhancement of Efficiency of Activated Carbon Impregnated Chitosan for Carbon Dioxide Adsorption

  • Patkool, Chaiwat;Chawakitchareon, Petchporn;Anuwattana, Rewadee
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.289-292
    • /
    • 2014
  • The effect of carbon dioxide ($CO_2$) on global warming is serious problem. The adsorption with solid sorbents is one of the most appropriate options. In this study, the most interesting adsorbent is granular activated carbon (GAC). It is suitable material for $CO_2$ adsorption because of its simple availability, many specific surface area, and low-cost material. Afterwards, GAC was impregnated with chitosan solution as impregnated granular activated carbon (CGAC) in order to improve the adsorption capacity of GAC. This research aims to compare the physical and chemical characteristics of GAC and CGAC. The experiment was carried out to evaluate the efficiency of $CO_2$ adsorption between GAC and CGAC. The results indicated that the iodine number of GAC and CGAC was 137.17 and 120.30 mg/g, respectively. The Brunauer-Emmett-Teller results (BET) of both GAC and CGAC show that specific surface area was 301.9 and $531.3m^2/g$, respectively; total pore volume was 0.16 and $0.29cm^3/g$, respectively; and mean diameter of pore was 2.18 and 2.15 nm, respectively. Finally, the $CO_2$ adsorption results of both GAC and CGAC in single column how the maximum adsorption capacity was 0.17 and 0.25 mol/kg, respectively; how degeneration time was 49.6 and 80.0 min, respectively; and how the highest efficiency of $CO_2$ adsorption was 91.92% and 91.19%, respectively.

Alanine and serine functionalized magnetic nano-based particles for sorption of Nd(III) and Yb(III)

  • Galhoum, Ahmed A.;Mahfouz, Mohammad G.;Atia, Asem A.;Gomaa, Nabawia A.;Abdel-Rehem, Sayed T.;Vincent, Thierry;Guibal, Eric
    • Advances in environmental research
    • /
    • v.5 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • Magnetic nano-based sorbents have been synthesized for the recovery of two rare earth elements (REE: Nd(III) and Yb(III)). The magnetic nano-based particles are synthesized by a one-pot hydrothermal procedure involving co-precipitation under thermal conditions of Fe(III) and Fe(II) salts in the presence of chitosan. The composite magnetic/chitosan material is crosslinked with epichlorohydrin and modified by grafting alanine and serine amine-acids. These materials are tested for the binding of Nd(III) (light REE) and Yb(III) (heavy REE) through the study of pH effect, sorption isotherms, uptake kinetics, metal desorption and sorbent recycling. Sorption isotherms are well fitted by the Langmuir equation: the maximum sorption capacities range between 9 and 18 mg REE $g^{-1}$ (at pH 5). The sorption mechanism is endothermic (positive value of ${\Delta}H^{\circ}$) and contributes to increase the randomness of the system (positive value of ${\Delta}S^{\circ}$). The fast uptake kinetics can be described by the pseudo-second order rate equation: the equilibrium is reached within 4 hours of contact. The sub-micron size of sorbent particles strongly reduces the contribution of resistance to intraparticle diffusion in the control of uptake kinetics. Metal desorption using acidified thiourea solutions allows maintaining sorption efficiency for at least four successive cycles with limited loss in sorption capacity.

Characteristics of Carbon Dioxide Separation for Solid Absorbents According to Amine Order (아민 차수에 따른 고체 흡수제의 이산화탄소 분리 특성)

  • Hyun Tae Jang
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.619-626
    • /
    • 2023
  • Primary and secondary amine-based sorbents were synthesized to investigate the operation capacity for the carbon dioxide separation TSA process. (3-Aminopropyl) triethoxysilane was used as a primary amine precursor as a crosslinking agent to synthesize a secondary amine precursor in which amine groups were crosslinked with a crosslinking agent. Carbon dioxide absorbed by primary amines is completely separated above 170 ℃. The working capacity of the primary amine absorbent was less than 2% when regenerated at 130℃. The secondary amine absorbent has a higher carbon dioxide separation capacity at a lower regeneration temperature than the primary amine absorbent. The secondary amine absorbent could predict process operation performance of about 6.5% with 2% carbon dioxide absorption and 100% carbon dioxide regeneration conditions. Therefore, it was found that the working capacity of the secondary amine absorbent was higher than that of the primary amine.

Recent Advances on MOF-assisted Atmospheric Water Harvesting at Dry Regions (수분 수착 MOF를 이용한 건조한 지역의 대기 중 워터하베스팅 기술의 최근 동향)

  • Geunho Lee;Woochul Song
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.30-37
    • /
    • 2024
  • As a promising method to address global water scarcity, sorbent-assisted water harvesting from air has shown great potential to deliver drinking water for inlands lacking traditional water sources. In this article, the recent studies of using metal-organic frameworks (MOFs) as sorbents to harvest atmospheric water will be introduced. Compared to the other sorbent materials such as zeolites or silica-based materials, MOFs have shown prospective properties such as the water isotherm inflection points as low as ~10%, which are suitable for harvesting water at dry regions. Due to this property, recently, MOFs have been extensively adopted to develop practical water harvesting devices that can harvest water. Since atmospheric water is accessible anywhere and anytime in the world, this technology is expected to open a new avenue in terms of securing safe water for the future.

Evaluation of Adsorbent Sampling Methods for Volatile Organic Compounds in Indoor and Outdoor Air (실내·외 공기 중 휘발성 유기화합물에 대한 흡착 시료채취 방법의 평가)

  • Baek, Sung-Ok;Moon, Young-Hun
    • Analytical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.496-513
    • /
    • 2004
  • This study was carried out to evaluate the performance of sampling and analytical methodology used for the measurement of toxic volatile organic compounds (VOCs) in the ambient air. VOCs were determined by the adsorbent tube sampling and automatic thermal desorption coupled with GC/MSD analysis. Target analytes were 33 compounds including major aromatic compounds such as BTEX, and halogenated compounds. The methodology was investigated with a wide range of different adsorbents which are commercially available and have been frequently adopted for the VOC measurement. A total of 10 adsorbents were tested in this study: 6 carbon-based adsorbents such as Carbotrap, Carbopack B, Carbosieve S-III, Carboxen 1000, Carbotrap C, Activated Charcoal; and 4 polymer-based adsorbents including Tenax, Porapak Q, Chromosorb 102, and Chromosorb 106. The sampling performance was evaluated with respect to the sampling capacity of VOCs with single-adsorbent and multiple-adsorbents methods for standard samples and field samples. As a result, the best adsorbents for single-adsorbent method in the sampling of toxic organic compounds (including benzene, toluene, xylenes etc.) appeared to be Carbotrap, Carbopack B and Tenax TA. On the other hand, Chromosorb 102, Chromosorb 106 and Porapak Q were found to be unsuitable adsorbents for VOC measurement based on thermal desorption method. Multi-adsorbent packings were evaluated with 4 carbon-based adsorbents, which classified by 3 combination sets of double adsorbents and 2 combination sets of triple adsorbents. The results indicated that the most suitable combination for toixc VOC measurements is Carbotrap C with Carbotrap. Multi-sorbents tubes packed with a strong adsorbent such as Carbosieve S-III or Carboxen 1000 were found to be relatively unsuitable for several compounds, not only owing to the effect of migration of adsorbed compounds from weaker adsorbent to stronger adsorbent, but to hydrophobic nature of the adsorbents. Therefore, it should be addressed that selection of a proper adsorbent (or combination of multi sorbents) is extremely important to obtain reliable data for the concentrations of toxic VOCs in indoor and outdoor environments.

Development of the Advanced Manganese-Based Sorbent for Hot Coal Gas Desulfurization (고온 석탄 가스 탈황을 위한 개선된 망간계 탈황제 개발)

  • Shon, Byung-Hyun;Choi, Eun-Hwa;Cho, Ki-Chul;Jeon, Dae-Young;Oh, Kwang-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.291-302
    • /
    • 2000
  • This experiments have been made to develop of manganese-based sorbent for the removal of hydrogen sulfide from hot coal gases. Manganese-based sorbent were tested in an ambient-pressure fixed-bed reactor to determine steady state $H_2S$ concentrations, breakthrough times and feasibility of the sorbent when subjected to cycle sulfidation and regeneration testing. Effects of particle size of sorbent, temperature of sulfidation, regeneration temperature and regeneration characteristics on the $H_2S$ removal efficiency were investigated. Experimental results showed that the $H_2S$ removal efficiency was optimal when the temperature was about $800^{\circ}C$ and the smaller particle size, the better $H_2S$ removal efficiency but in the range of 0.214~0.631mm didn't influence it much. The equilibrium constant(K) is represented as a log(K)=3.396/T-1.1105 and the utilization efficiency of sorbents was about 92% at $800^{\circ}C$. Regeneration in air produced $SO_2$ concentration as high as 8.5% at $800^{\circ}C$, 8.4% at $850^{\circ}C$, and 8.8% at $900^{\circ}C$ and may be used in sulfuric acid production.

  • PDF

Application of Adsorption Sampling and Thermal Desorption with GC/MS Analysis for the Measurement of Low-Molecular Weight PAHs in Ambient Air (환경대기 중 저분자 PAHs 측정을 위한 흡착-열탈착-GC/MS 방법의 적용)

  • Seo, Seok-Jun;Seo, Young-Kyo;Hwang, Yoon-Jung;Jung, Dong-Hee;Baek, Sung-Ok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.4
    • /
    • pp.362-377
    • /
    • 2014
  • Polycyclic aromatic hydrocarbons (PAHs) have been of particular concern since they are present both in the vapor and particulate phases in ambient air. In this study, a simple method was applied to determine the vapor phase PAHs, and the performance of the new method was evaluated with a conventional method. The simple method was based on adsorption sampling and thermal desorption with GC/MS analysis, which is generally applied to the determination of volatile organic compounds (VOCs) in the air. A combination of Carbotrap (300 mg) and Carbotrap-C (100 mg) sorbents was used as the adsorbent. Target compounds included two rings PAHs such as naphthalene, acenaphthylene, and acenaphthene. Among them, naphthalene was listed as one of the main HAPs together with a number of VOCs in petroleum refining industries in the USA. For comparison purposes, a method based on adsorption sampling and solvent extraction with GC/MS analysis was adopted, which is in principle same as the NIOSH 5515 method. The performance of the adsorption sampling and thermal desorption method was evaluated with respect to repeatabilities, detection limits, linearities, and storage stabilities for target compounds. The analytical repeatabilities of standard samples are all within 20%. Lower detection limits was estimated to be less than 0.1 ppbv. In the results from comparison studies between two methods for real air samples. Although the correlation coefficients were more than 0.9, a systematic difference between the two groups was revealed by the paired t-test (${\alpha}$=0.05). Concentrations of two-rings PAHs determined by adsorption and thermal desorption method consistently higher than those by solvent extraction method. The difference was caused by not only the poor sampling efficiencies of XAD-2 for target PAHs and but also sample losses during the solvent extraction and concentration procedure. This implies that the levels of lower molecular PAHs tend to be underestimated when determined by a conventional PAH method utilizing XAD-2 (and/or PUF) sampling and solvent extraction method. The adsorption sampling and thermal desorption with GC analysis is very simple, rapid, and reliable for lower-molecular weight PAHs. In addition, the method can be used for the measurement of VOCs in the air simultaneously. Therefore, we recommend that the determination of naphthalene, the most volatile PAH, will be better when it is measured by a VOC method instead of a conventional PAH method from a viewpoint of accuracy.