• Title/Summary/Keyword: soot oxidation

Search Result 89, Processing Time 0.025 seconds

Soot Formation and Oxidation in Air-Diluted Propane Diffusion Flames under Elevated Pressures (압력조건에서 공기로 희석된 프로판 확산화염의 매연 생성과 산화 특성)

  • Bae, Seungman;Nam, Younwoo;Lee, Wonnam
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.267-268
    • /
    • 2012
  • Soot formation and oxidation characteristics of air-diluted propane diffusion flames have been experimentally investigated under the elevated pressure conditions. PAH concentrations showed more pressure sensitive behavior comparing to soot volume fractions. The flame/soot temperatures in soot oxidation region were obtained using the MOLLIP technique. Under the complete soot oxidation environment, the flame/soot temperature is increased with pressure. The increased temperature could accelerate the soot oxidation process and then exothermic oxidation reaction, in turn, could further raise the flame/soot temperature, which would result in the enhancement of soot oxidation process.

  • PDF

Overview of the Effect of Catalyst Formulation and Exhaust Gas Compositions on Soot Oxidation In DPF

  • Choi Byung Chul;FOSTER D.E.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • This work reviews the effects of catalyst formulation and exhaust gas composition on soot oxidation in CDPF (Catalytic Diesel Particulate Filter). DOC's (Diesel Oxidation Catalysts) have been loaded with Pt catalyst (Pt/$Al_{2}O_3$) for reduction of HC and CO. Recent CDPF's are coated with the Pt catalyst as well as additives like Mo, V, Ce, Co, Fe, La, Au, or Zr for the promotion of soot oxidation. Alkali (K, Na, Cs, Li) doping of metal catalyst tends to increase the activity of the catalysts in soot combustion. Effects of coexistence components are very important in the catalytic reaction of the soot. The soot oxidation rate of a few catalysts are improved by water vapor and NOx in the ambient. There are only a few reports available on the mechanism of the PM (particulate matter) oxidation on the catalysts. The mechanism of PM oxidation in the catalytic systems that meet new emission regulations of diesel engines has yet to be investigated. Future research will focus on catalysts that can not only oxidize PM at low temperature, but also reduce NOx, continuously self-cleaning diesel particulate filters, and selective catalysts for NOx reduction.

Effect of NO on Catalytic Soot Oxidation in Tight Contact with $Pt/CeO_2$ Using a Flow Reactor System ($Pt/CeO_2$ 촉매와 Tight Contact 한 상태의 Model Soot 산화에 NO가 미치는 영향에 관한 실험적 연구)

  • Lee, Dong-Il;Song, Chang-Hoon;Song, Soon-Ho;Chun, Kwang-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.52-56
    • /
    • 2011
  • Active regeneration in CDPF requires $O_2$ which regenerates soot at high temperature. However, small amount of NO can interrupt $O_2$ regeneration in CDPF. To verify this phenomena, soot oxidation experiments using a flow reactor with a $Pr/CeO_2$ catalyst are carried out to simulate Catalyzed Diesel Particulate Filter (CDPF) phenomena. Catalytic soot oxidation with and without small amount of NO is conducted under tight contact condition. As the heating rate rises, the temperature gap of maximum reaction rate is increased between with and without 50ppm NO. To accelerate the $NO_2$ de-coupling effect, CTO process is performed to eliminate interfacial contact for that time. As CTO process is extended, temperature which indicates peak reaction rate increases. From this result, it is found that small amount of NO can affect tight contact soot oxidation by removal of interfacial contact between soot and catalyst.

OH Radical Distribution and Sooting Characteristics in Co-Flow Diffusion Flames (동축류 확산화염의 OH 라다칼 분포 및 매연 특성)

  • Lee, Won-Nam;Song, Young-Hoon;Cha, Min-Suk
    • 한국연소학회:학술대회논문집
    • /
    • 1997.06a
    • /
    • pp.1-11
    • /
    • 1997
  • The soot and OH radical distributions have been experimentally studied in ethylene and propane laminar diffusion flames. The integrated soot volume fraction was measured along the centerline of a flame using a laser light extinction method. Planar laser light scattering and PLIF techniques are employed for the soot and OH radical distribution measurements utilizing Nd:YAG laser and OPO, FDO system. The concentration of OH radical is rapidly decreased at the edge of sooting region, which implies the importance of OH radical species on the soot oxidation process. For ethylene flames, the addition of air in fuel moves the OH radical distribution towards the center line of a flame at the soot oxidation region, while the concentration of OH radical remains relatively high at the soot formation region. The interaction between soot particles and OH radicals becomes more active with fuel-air at the soot oxidation region. For propane flames, however, any indication of the increased interaction between soot particles and OH radicals with fuel-air was not noticed.

  • PDF

An experimental study on $NO-NO_2$ conversion characteristics and oxidation of soot by corona discharge (코로나방전에 의한 $NO_2$ 전환특성 및 soot 산화에 관한 연구)

  • Park, Yong-Seong;Chun, Kwang-Min;Park, Kwang-Seo;Lee, Jong-Hyun;Cho, Seong-Woo
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.179-184
    • /
    • 2001
  • The characteristics of $NO-NO_2$ conversion and soot oxidation by corona discharge are investigated experimentally. The discharge current decreases with the increase of oxygen concentration and it increases more sharply for anode corona than for cathode corona as discharge voltage increases after corona onset voltage. $NO-NO_2$ conversion increases with the energy density of corona discharge and the addition of $O_2$ in a base $N_2$ gas. Soot oxidation occurs at approximately $480^{\circ}C$ in a mixture of 21% $O_2$, base $N_2$ gas, and enhances as temperature increases. The initiation temperature of soot oxidation advances greatly to about $280^{\circ}C$ with the addition of 300ppm $NO_2$, which is generated from the conversion of NO to $NO_2$ by corona discharge. CO is generated at higher temperature by about $50{\sim}100^{\circ}C$ than $CO_2$ in the process of soot oxidation.

  • PDF

A Study of Simultaneous Reaction for NOx, Soot and Thermal Shock according to Pt Catalyst's Supports (담체에 따른 Pt 촉매의 NOx, soot 동시 반응특성과 열충격에 관한 연구)

  • Kim, Sung Su;Park, Kwang Hee;Bae, Se Hyun;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.437-442
    • /
    • 2009
  • In this work, thermal shock and simultaneous removal reaction for NOx, soot over Pt catalysts using $TiO_2$, $Al_2O_3$ as support were studied. The catalytic reaction test for NOx and soot were also performed independently and simultaneously, as a result, it showed different NOx removal efficiency and soot oxidation rate according to support and phase, and the onset temperature of soot oxidation has correlation to NOx removal efficiency for the catalyst. The onset temperature of soot oxidation shifted to lower temperature by generated $NO_2$ at the simultaneous reaction for NOx and soot. Also Pt/$TiO_2$ catalyst is more affected than Pt/$Al_2O_3$ on NOx removal efficiency caused by thermal shock while Pt sintering effect induced to reduce the performance on soot oxidation rate for all catalysts.

The Effects of Laser Heating on the Soot Formation and Oxidation of a Diffusion Flame (레이저 가열 위치에 따른 확산화염의 매연생성 및 산화 특성 변화)

  • Lee, Won-Nam;Nam, Youn-Woo;Lee, Chun-Beom;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.112-117
    • /
    • 2004
  • The effects of laser heating on soot formation and oxidation of propylene diffusion flames have been studied experimentally under nearly sooting conditions. The non-sooting flame can be converted to a sooting flame when the laser light heats up a flame at 7 mm height, while a sooting flame can be changed to a non-sooting flame when a flame is heated with laser light at flame height of 13 mm. The selective heating at the soot formation and/or oxidation region determines the sooting behavior of a diffusion flame. The increased soot/flame temperatures are most likely to be responsible for both the decreased and increased soot formation/oxidation.

  • PDF

Flamelet Modelling of Soot Formation and Oxidation in a Laminar $CH_4$-Air Diffusion Flame (화염편모델을 이용한 층류확산화염장의 매연 생성 및 산화과정 해석)

  • Kim, Gun-Hong;Kim, Hu-Jung;Kim, Yong-Mo;Kim, Seung-Ku
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.3-9
    • /
    • 2003
  • By utilizing a semi-empirical soot model, the applicability of the laminar flamelet concept for simulating the formation and oxidation of soot in the laminar diffusion flame has been studied. The source terms for two transport equations of the soot formation and oxidation are calculated in the mixture fraction/scalar dissipation rate space for laminar flamelets and stored in a library. In this study, emphasis is given to the interaction associated with radiation and soot formation. The radiative heat loss is obtained by solving the radiative transfer equation using the unstructured grid finite volume method with the WSGGM. The calculated temperatures and soot volume fractions agree relatively well with the experimental data and the previous numerical results of Kaplan et al. using the detailed chemistry.

  • PDF

Analysis of Effect of Fuel Additive on Soot Suppression Using Laser Scattering Technique (광 산란 기술을 이용한 연료 첨가제의 그을음 억제 효과 분석)

  • Seo, Hyoungseock;Kim, Kibum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.204-210
    • /
    • 2016
  • This paper presents an experimental analysis of the growth and oxidation processes of soot particles generated in an isooctane diffusive laminar flame due to incomplete combustion. The effects of iron-based diagnostics were employed to measure the elastic scattering light from soot particles in a flame at different flame heights, and the differential scattering coefficients were calculated through a calibration process. The growth and oxidation of soot particles in flame was investigated by comparing differential scattering coefficients, and the soot volume fraction was seen to decrease in the soot oxidation process. In the same manner, the differential scattering coefficients were calculated for iron-based fuel-additive seeded flame, and these coefficients were revealed to be smaller than those obtained in the fuel-additive unseeded flame. In addition, transmission through the radial direction of the flame was measured, and transmission in the soot oxidation regime was approximately 5% higher for the seeded flame. The propensity of the data coincided well with the differential scattering coefficients, and it can be concluded that the iron component of the fuel additive plays a crucial role as a catalyst, which eventually enhanced soot particle oxidation.

The addition of nitrogen oxides for improving the rate of catalytic ozone-induced oxidation of soot (산화질소 첨가에 의한 오존 기반 탄소입자상물질 촉매연소반응 속도의 개선)

  • Lee, Namhun;Park, Tae Uk;Lee, Jin Soo;Lee, Dae-Won
    • Journal of Industrial Technology
    • /
    • v.39 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • In this study, we examined the effect of NO addition on the ozone-induced soot oxidation activity of $LaMnO_3$ perovskite catalysts. The addition of 10~20% NO ($NO_2$) with respect to the concentration of ozone effectively enhanced the rate of ozone-induced soot oxidation rate over $LaMnO_3$. However, the excessive addition of NO ($NO_2$) was detrimental to ozone-induced soot oxidation activity. It is supposed nitrogen oxides would adsorb on the catalyst and then react with carbon-oxygen species developed on soot surface, but an excessive addition of nitrogen oxide would inhibit the formation of carbon-oxygen species, which is a key intermediate in the reaction, and consequently suppress the oxidation rate of soot.