• Title/Summary/Keyword: sonochemical

Search Result 93, Processing Time 0.03 seconds

Property analysis of polysilane precursors and applications for polysilicon (폴리실란으로부터 생성한 폴리실리콘의 물성 분석과 응용)

  • Lee, Gyu-Hwan
    • Analytical Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.345-349
    • /
    • 2012
  • Polysilane black powders were synthesized by sonochemical methods from silicon tetrachloride with sodium metal with 37.0% yield. Those black powder materials were found to have fibrous or irregular shapes with round surface. It was found that thermal behaviors of those polysilane black powders were similar to that of hydropolysilanes which was reported earlier. After thermal treatment, black polysilicon was obtained with 57.1% residue yield, and those fibrous or irregular shapes with round surface were intact but lots of small cavities were formed indicating porous structure, and found to be an amorphous state from XRD analysis.

Synthesis of poly(dialkyl or monoalkyl)silanes as silicon carbide precursors for ceramic matrix composites (탄화규소 선구물질로서의 폴리(디알킬 또는 모노알킬)실란들의 합성과 세라믹 복합체 응용)

  • Lee, Gyu-Hwan
    • Analytical Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • Polyalkylsilanes such as poly(dialkyl)silanes and poly(monoalkyl)silanes were synthesized by sonochemical dechlorination-condensation method from (dialkyl or monoalkyl)chlorosilanes with sodium metal. Those polyalkylsilanes were analyzed for the properties such as thermal behaviors from TGA analysis and obtained ceramic yields of 10-20% for poly(dialkyl)silanes and 40-60% for poly(monoalkyl)silanes. Ceramic composite discs were prepared by the combined mixture of polyalkylsilanes and SiC powder and were tested by TGA and analyzed by SEM and XRD for the application as binder for ceramic composite precursors.

The Microstructure and Magnetic Properties of YIG Powders Synthesized by a Coprecipitaion and a Sonochemical Process

  • Hong, Seong-Min;Kim, Yong-Il;Kim, Cheol-Gi
    • Journal of Magnetics
    • /
    • v.14 no.4
    • /
    • pp.165-167
    • /
    • 2009
  • Nano-sized Yttrium iron garnet (YIG;$Y_3Fe_5O_{12}$) particles have been synthesized by using coprecipitation and a heat treatment process. The YIG particles were made using a nitrate or a chloride salt solution. The pH concentration of the solution was fixed at 12. Spherical shaped YIG particles were made with a size of about 20 nm. The magnetization value of the particles was smaller than the bulk value but their coercive field showed a high value.

Magnetic Property of α-Fe2O3 Nanoparticles Prepared by Sonochemistry and Take-off Technique

  • Koo, Y.S.;Yun, B.K.;Jung, J.H.
    • Journal of Magnetics
    • /
    • v.15 no.1
    • /
    • pp.21-24
    • /
    • 2010
  • A new synthetic method for the formation of uniform $\alpha-Fe_2O_3$ nanoparticles was reported and their magnetic properties were investigated. The sonochemical synthesis and the subsequent take-off technique resulted in spherical shaped $\alpha-Fe_2O_3$ nanoparticles with an average diameter of 60 nm. The temperature- and applied magnetic field-dependent magnetization of the $\alpha-Fe_2O_3$ nanoparticles was explained by the sum of two contributions, i.e., the Morin transition and superparamagnetism, because the critical size for superparamagnetism was within the size variation of the nanoparticles.

Fabrication of H2 Gas Sensor Based on ZnO Nanarod Arrays by a Sonochemical Method

  • Lee, Mi-Sun;Oh, Eu-Gene;Jeong, Soo-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3735-3737
    • /
    • 2011
  • We report a simple method for fabricating ZnO gas sensors via a sonochemical route and their $H_2$ gas sensing properties. Vertically aligned ZnO nanorod arrays as a sensing material were synthesized on a Pt-electrode patterned alumina substrate under ambient conditions. The advantage of the proposed method is a high speed of processing. The gas sensor based on ZnO nanorod arrays with large specific surface area showed a high response to $H_2$ and a detection limit of 70 ppm at $250^{\circ}C$. Also, their response and recovery time were relatively short and a complete regeneration was observed. A mechanism for sensing $H_2$ gas on the surface of ZnO nanorods is proposed.