• Title/Summary/Keyword: sonochemical

Search Result 93, Processing Time 0.035 seconds

Study about the In-situ Synthesis and Structure Control of Multi-walled Carbon Nanotubes and their Nanocomposites (다중벽 탄소나노튜브와 다양한 나노입자 복합체의 In-situ 합성법개발 및 구조제어연구)

  • Park, Ho Seok
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.729-732
    • /
    • 2012
  • Herein we report the in-situ synthesis and direct decoration of chalcogenide naoparticles (NPs) onto multiwalled carbon nanotubes (MWCNTs) through an ionic liquid-assisted sonochemical method (ILASM). The as-obtained MWCNT/$BMimBF_4$/CdTe, MWCNT/$BMimBF_4$/ZnTe and MWCNT/$BMimBF_4$/ZnSe nanocomposites were characterized by TEM images and EDS spectra. In particular, the morphologies of nanocomposites such as bump-like, rough, and smooth core-shell structures were strongly influenced by the type of precursors and the interactions with MWCNT. This synthetic strategy opens a new way to directly synthesize and deposit semiconducting NPs (s-NPs) onto CNTs, which consist of binary components obtained from two precursors with different reaction rates.

Synthesis and Characterization of TiO2/CuS Nanocomposite Fibers as a Visible Light-Driven Photocatalyst

  • An, HyeLan;Kang, Leeseung;Ahn, Hyo-Jin;Choa, Yong-Ho;Lee, Chan Gi
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.3
    • /
    • pp.267-274
    • /
    • 2018
  • $TiO_2/CuS$ nanocomposites were fabricated by precipitation of nanosized CuS via sonochemical method on electrospun $TiO_2$ nanofibers, and their structure, chemical bonding states, optical properties, and photocatalytic activity were investigated. In the $TiO_2/CuS$ nanocomposite, the position of the conduction band for CuS was at a more negative than that of TiO; meanwhile, the position of the valence band for CuS was more positive than those for TiO, indicating a heterojunction structure belonging to type-II band alignment. Photocatalytic activity, measured by decomposition of methylene blue under visible-light irradiation (${\lambda}$ > 400 nm) for the $TiO_2/CuS$ nanocomposite, showed a value of 85.94% at 653 nm, which represented an improvement of 52% compared to that for single $TiO_2$ nanofiber (44.97% at 653 nm). Consequently, the photocatalyst with $TiO_2/CuS$ nanocomposite had excellent photocatalytic activity for methylene blue under visible-light irradiation, which could be explained by the formation of a heterojunction structure and improvement of the surface reaction by increase in surface area.

Sonochemical Grafting of Poly(vinyl alcohol) onto Multiwall Carbon Nanotubes in Water (초음파를 이용한 PVA에 의한 다중벽 탄소나노튜브의 수상 그래프팅)

  • Kim, Yeongseon;Baeck, Sung Hyeon;Shim, Sang Eun
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.378-385
    • /
    • 2014
  • Multiwall carbon nanotubes (MWCNTs) were modified with a water soluble polymer, poly(vinyl alcohol), PVA, using a simple ultrasonic wave in water. Under the irradiation of ultrasound, PVA chains were severed as macroradicals and instantly grafted onto the surface of MWCNTs due to the radical scavenging effect of MWCNTs. To control the grafting PVA onto MWCNTs, the ultrasonication power and irradiation time were changed from 300 to 500 W and from 10 to 50 min, respectively. The grafted PVA onto MWCNTs was confirmed by FTIR, TGA, SEM, and TEM. Dispersion stability of the modified MWCNTs was monitored by Turbiscan. The amount of grafted PVA on MWCNTs increased with the increase in the sonication power and irradiation time. The grafted PVA on MWCNTs induced the improved dispersion stability of the modified MWCNTs in water. These findings exhibit that ultrasound can be readily used for the grafting polymer chains on MWCNTs.

The Study of Ibuprofen Degradation Properties by Combination of Wave Energy (Ultrasound, Ultraviolet) and Persulfate Ion (파 에너지 (자외선, 초음파)/과황산나트륨을 이용한 이부프로펜 분해특성 연구)

  • Na, Seungmin;Ahn, Yungyong;Cui, Mingcan;Son, Younggu;Khim, Jeehyeong
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.963-972
    • /
    • 2014
  • In this study, ibuprofen(IBP) degradation by the photochemical ($UV/S_2O{_8}^{2-}$) and sonochemical ($US/S_2O{_8}^{2-}$) processes was examined under various parameters, such as UV ($10{\sim}40{\pm}5W/L$) and US ($50{\sim}90{\pm}5W/L$) power density, optimum dosage of persulfate ion ($S_2O{_8}^{2-}$), temperature ($20{\sim}60^{\circ}C$) and anions effect ($Cl^-$, $HCO_3{^-}$, $CO{_3}^{2-}$). The pseudo-first-order degradation rate constants were in the order of $10^{-1}$ to $10^{-5}min^{-1}$ depending on each processes. The synergistic effect of IBP degradation in $UV/S_2O{_8}^{2-}$ and $US/S_2O{_8}^{2-}$ processes could investigated, due to the generation of $SO_4{^-}$ radical. This result can confirm from the produced $H_2O_2$ and $SO{_4}^{2-}$ concentration in each processes. IBP degradation rate affected by the $S_2O{_8}^{2-}$ dosage, temperature, power and anion existence parameters. In particular, IBP degradation rate increased with the increase of the temperature ($60^{\circ}C$) and applied power density (UV:$40{\pm}5W/L$, US:$90{\pm}5W/L$). On the other hand, anions effect on the IBP degradation was negative, due to the anion play as a the scavenger of radical.

A Novel Acid-Base Catalyzed Sol-Gel Synthesis of Highly Active Mesoporous TiO2 Photocatalysts

  • Khan, Romana;Kim, Sun-Woo;Kim, Tae-Jeong;Lee, Hyo-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.1951-1957
    • /
    • 2007
  • A new synthetic strategy based on the acid-base catalyzed sol-gel method was developed for the preparation of a series of mesoporous TiO2 nanoparticles. A key feature of the method involves a gradual change in pH (0.8- 9) during the sol-gel transition, which guarantees easy introduction of mesoporosity without relying on the well-established sonochemical or template approach. In addition, this method leads to the exclusive formation of the anatase phase stable enough to the calcination temperature up to 600 oC. The physicochemical properties of the particles in the series were characterized by various spectroscopic and analytical techniques such as wide-angle XRD, SAXRD, BET surface area, FE-SEM, TEM, FT-IR, TGA, and XPS. The photocatalytic efficiency of these materials was investigated for the oxidation of toluene under UV-irradiation. All but T-ad in the series exhibited high photocatalytic activity pushing the reaction into completion within 3 h. The reaction followed the first order kinetics, and the rate reaches as high as 3.9 × 10?2/min which exceeds the one with the commercially available Degussa P-25 by a factor of 3.2. When comparison is made among the catalysts, the reactivity increases with increase in the calcination temperature which in turn increases the crystallinity of the anatase phase, thus revealing the following rate orders: T-3 < T-4 < T-5 < T-6.

Emulsion Polymerization of Octamethylcyclotetrasiloxane under Ultrasonic Irradiation (고강도 초음파를 이용한 Octamethylcyclotetrasiloxane의 에멀전 중합)

  • Kim, Jihye;Kim, Yubin;Kim, Hyungsu
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.322-328
    • /
    • 2009
  • Emulsion polymerization of octamethylcyclotetrasiloxane (OMCTS) was conducted under ultrasonic irradiation. Two sources of ultrasound with different intensities and frequencies of 20 KHz and 40 KHz were used for horn and bath type reactor, respectively. A combined process of horn and bath was also investigated. The effectiveness of the reaction systems was investigated by measuring conversion as well as intrinsic viscosity of the products. The influence of reaction temperature and sonication time on the progress of sonochemical polymerization was examined. It was found that conversion of greater than 80% and high viscosity were achieved within a few minutes of sonication in a horn type reactor, however, conversion and viscosity showed maximum values depending upon the sonication time. In a bath type reactor where a relatively weak intensity was maintained, longer duration time of more than one hour of sonication was required to reach a high level of conversion and viscosity. Compared with the horn type system, the conversion and viscosity in the bath type reactor were increased along with the sonication time. When the polymerization was carried out in a combined system of horn and bath, the evolution of conversion and molecular weight was quite different from the other cases. For the given geometry of reaction system, acoustic analysis using a commercial software was carried out and the results were correlated with experimental observation.

Preparation of ZnO/SiO2 Nano-Composition and Photocatalysts and Antibacterial Activity (ZnO/SiO2 나노 입자의 화학적 합성과 광촉매 및 항균성 특성에 관한 연구)

  • Kim, Jae-Uk;Yuk, Young-Sam;Kim, Jong-Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.4
    • /
    • pp.179-184
    • /
    • 2017
  • In this paper, a $ZnO/SiO_2$ nano-composite was prepared by a simple chemical method at room temperature. For the synthesis of ZnO nanoparticles (NPs), a sonochemical method was used, and $SiO_2$ NPs were prepared by precipitation method. The formation of $ZnO/SiO_2$ NCs was characterized by X-ray diffractometer (XRD) and confirmed by field-emission scanning electron microscopy (FE-SEM) and Fourier transform infra-red spectroscopy(FT-IR). The photocatalytic properties of $ZnO/SiO_2$ NCs formed at different concentrations of $SiO_2$ were evaluated by rhodamine-B dye. It was confirmed that increasing $SiO_2$ concentration resulted in an increase in the photocatalytic property. In addition, the antibacterial activity of $ZnO/SiO_2$ NCs was conducted against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). As a result, the antibacterial activities of E.coli and S. aureus were increased in the presence of thick SiO NPs layer.

The Effect of Irradiation Distance/Volume on Sonochemical Oxidation of Arsenite (초음파를 이용한 As(III) 산화 시 조사 거리/부피의 영향)

  • Kim, Eunkyung;Son, Younggyu;Cui, Mingcan;Khim, Jeehyeong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.247-253
    • /
    • 2012
  • The objective of this study was to find the frequency that most effectively generates hydroxyl radical and to investigate the effect of solution volume on the oxidation of arsenite (As[III]) under the determined frequency. Based on the cavitation yield for hydrogen peroxide, hydroxyl radical is formed most effectively under the frequency of 300 kHz. The experiment was performed with various solution volumes (334, 690, 1,046, and 1,401 mL) under 300 kHz. Results showed that as solution volume increased, kinetic constant for arsenite oxidation decreased. However, cavitation yield for arsenite decreased in small volumes (334, and 690 mL) but maintained or increased in large volumes (1,046, and 1,401 mL) over a set period of time (10, 30, and 60 min). Based on the kinetic constant result, it is more advantageous to oxidize arsenite in small volumes. However, according to the cavitation yield for arsenite, it is applicable to oxidize arsenite in large volumes over a long period of time.

Development of Various Pilot Scale's Ultrasound Systems and Sonodegradation of Naphthalene in Water (다양한 형태의 Pilot Scale 초음파 시스템 개발 및 나프탈렌 분해효율 검증)

  • Park, Jong-Sung;Lee, Ha-Yun;Han, Jong-Hun;Her, Nam-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.4
    • /
    • pp.281-288
    • /
    • 2011
  • Recently, researches that a variety of contaminants in water are removed by sonolysis technology with oxidation and pyrolysis process from cavitation were conducted. However, there are few studies for sonochemical treatment by a pilot-scale ultrasound system. This research focused on developing pilot-scale ultrasound systems, which could be an continuously effective treatment for a large volumes of contaminants, and demonstrating the feasibility of utilizing these systems to remove naphthalene from groundwater. V-120 type reactor was found to be 1.4~2.2 times higher effective than the normal type. A total of three different pilot scale's systems consisted of installing effluent and irrigation water in order to be a continuos system, including supplemental additives, and applying a V-120 type reactor and a external cooling cycle system. Naphthalene levels treated by three systems were lower than a recommended guideline of naphthalene for drinking water in EPA. Especially, the naphthalene removal efficiencies of PS1 and PS2 systems were over 97%. The pilot-scale continuous ultrasound clean-up system delivered over 84~95% naphthalene removal efficiency for treatment of 10~20 liter of groundwater. In addition, the ultrasound system could be successfully applied to the conditions of artificial and genuine groundwater contaminated with naphthalene.

A Study on the Synergistic Effects of Hybrid System Simultaneously Irradiating the UV and US (자외선과 초음파를 동시에 조사하는 연계 공정의 시너지 효과에 관한 연구)

  • Lee, Hanuk;Han, Jonghun;Yoon, Yeomin;Lee, Jongyeol;Park, Jaewoo;Her, Namguk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.7
    • /
    • pp.5-11
    • /
    • 2014
  • Both ultraviolet (UV) and ultrasound (US) systems are used in degrading of organic contaminants and they can thus be applicable simultaneously as an UV/US hybrid system in attempts further to increase the degradation efficiency. The pseudo-first order degradation rate constants with the UV, US and UV/US hybrid irradiation were 2.60, 10.34, and $14.81{\times}10^{-3}min^{-1}$, respectively. It was observed that the synergistic effect of UV/US hybrid system for degrading the bis (2-ethylhexyl) phthalate (DEHP). The highest rate of DEHP degradation was found during UV/US hybrid irradiation and the synergistic effect factor (SEF) was calculated to be 1.15 based on the pseudo-first order degradation rate constants. Results indicate that synergistic effect of UV/US hybrid system is closely correlated to the enhancement of sonochemical reactivity with the UV-US interaction of increasing the formation rate of OHby providing additional $H_2O_2$ production through the pyrolysis of water molecules during UV/US hybrid irradiation.