• Title/Summary/Keyword: somatic embryogenic callus

Search Result 118, Processing Time 0.019 seconds

Establishment of suspension culture condition for embryogenic callus proliferation and somatic embryo development of Kalopanax septemlobus (음나무 배발생 캘러스의 증식 및 체세포배 발달을 위한 액체 현탁 배양조건 확립)

  • Kim, Sun-Ja;Moon, Heung-Kyu
    • Journal of Plant Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • This study was conducted to establish the optimal suspension culture system for both the propagation of embryogenic cells (ECs) and the induction of somatic embryos (SEs) of Kalopanax septemlobus. The proliferation rate of ECs was reduced as the inoculum density was increased; the highest rate was obtained when 0.1 g/100 ml of cells was initially inoculated. According to the analysis of cell growth pattern and cell growth cycle (G1, Sand G2/M), the cell growth started in 5 days culture initiation, grew rapidly until 15 days and then decreased gradually. Distinctive changes of the cell growth cycle by the culture periods was also observed; the growth cycle was doubled from initial 5.6% to 11.7% of S stage in 5 days culture and then reached in stable stages again. Therefore, the results indicated that a 15-day-cycle was the optimal culture period for the propagation of the ECs through the suspension culture. Furthermore, the cell inoculum density was also important for the induction of SE; more than 65% of SEs at the torpedo stage was induced by using the low level of cell inoculum (0.5 g/L), while the higher inoculum densities were rapidly reduced the proportion of SEs at that stage. Although the higher inoculum density delayed the development of SE, it did not affect the proportion of SEs at the globular and heart stage. In conclusion, this study showed that the suspension culture of the Kalopanax septemlobus ECs through the control of inoculum density was an efficient way for both the propagation of ECs and the induction of SEs, suggesting that the development of this system might help to reduce the culture period for the somatic embryo production.

Efficient Transformation of Trifolium repens L. Using Acetosyringone (Acetosyringone을 이용한 효율적인 White Clover의 형질전환)

  • TaeHoKwon
    • Korean Journal of Plant Resources
    • /
    • v.10 no.2
    • /
    • pp.107-113
    • /
    • 1997
  • Transformants of White Clover(Trifolium repens L.) were efficiently produced from immature seed derived callus cocultivated with Agrobacterium twnefaciens LBA4404 harboring plant binary vector. pBI121, using acetosyringone. The mean frequencies of transformants on the two kanamycin-containing media were 16 to 19% when the immature seed-derived calli were infected with bacteria cultured in the presence of 100$\mu$M acetosyringone compared with 7% in media without acetosyringone. Transgenic white clover was subject to molecular analysis for integration into plant nuclear genome and expression of $\beta$-glucuronidase(GUS) gene. PCR and Northern blot analyses demonstrated that GUS gene was integrated into white clover nuclear genome and expressed into its mRNA. The expression of GUS gene into its protein was confirmed by spectrophotometric assay of GUS activity.

  • PDF

Several Factors Affecting Transformation Efficiency of tall Fescue (톨페스큐의 효율적인 형질전환을 위한 몇 가지 요인의 영향)

  • 김진수;이상훈;이병현
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.3
    • /
    • pp.237-242
    • /
    • 2004
  • A system for the production of transgenic plants has been developed for tall fescue (Festuca arundinacea Schreb.) via Agrobacterium-mediated transformation of mature seed-derived embryogenic callus. Seed-derived calli were infected and co-cultured with Agrobacterium EHA101 carrying standard binary vector pIG121Hm encoding the hygromycin phosphotransferase (HPT), neomycin phosphotransferase II (NPTII) and intron-containing $\beta$-glucuronidase (intron-GUS) genes in the T-DNA region. The effects of several factors on transformation and the expression of the GUS gene were investigated. Inclusion of $200\mu\textrm{M}$ acetosyringone (AS) in inoculation and co-culture media lead to a increase in stable transformation efficiency. Transformation efficiency was increased when embryogenic calli were co-cultured for 5 days on the co-culture medium. The highest transformation efficiency was obtained when embryogenic calli were inoculated with Agyobacterium in the presence of 0.1% Tween20 and $200\mu\textrm{M}$ AS. Hygromycin resistant calli were developed into complete plants via somatic embryogenesis. GUS histochemical assay and Southern blot analysis of transgenic plants demonstrated that transgenes were successfully integrated into the genome of tall fescue.

Factors Affecting Genetic Transformation of Italian Ryegrass (이탈리안 라이그래스의 형질전환에 미치는 몇 가지 요인의 영향)

  • Lee, S.H.;Woo, H.S.;Lee, B.H.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.235-242
    • /
    • 2004
  • A system for the production of transgenic plants has been developed for Italian ryegrass(Lolium mult리orum Lam.) via Agrobacterium-mediated transformation of embryogenic callus. Mature seed-derived calli were infected and co-cultured with Agrobacterium EHA101 carrying standard binary vector pIG121Hm encoding the hygromycin phosphotransferase(HPT), neomycin phosphotransferase II (NPTII) and intron-oontaining $\beta$g1ucuronidase( intron-GUS) genes in the T-DNA region. The effects of several factors on transformation and the expression of the GUS gene were investigated. Inclusion of 200${\mu}M$ acetosyringone(AS) in inoculation and co-cultivation media lead to a significant increase in stable transformation efficiency. Increasing Agrobacterium cell density up to 1.0 in $OD_{600}$ during infection increased transfonnation efficiency of embryogenic calli. The highest transfonnation efficiency was obtained when embryogenic calli were incoulated with Agrobacterium in the presence of 0.1% Tween20 and 200${\mu}M$ AS. Hygromycin resistant calli were developed into complete plants via somatic embryogenesis. GUS histochemical assay and PCR analysis of transgenic plants demonstrated that transgenes were integrated into the genome of Italian ryegrass.

Plant Regeneration through Somatic Embryogenesis of Leymus chinensis Trin. (양초(Leymus chinensis Trin.)의 체세포배발생에 의한 식물체 재분화)

  • Kim Myoung Duck;Jin Hua;Park Eun-Joon;Kwon Suk-Yoon;Lee Haeng-Soon;Kwak Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.51-55
    • /
    • 2005
  • Chinese leymus (Leymus chinensis Trin.) is a perennial grass that is widely distributed at high pH sodic and arid soil in the northeastern Asia. An efficient regeneration system was established through somatic embryogenesis of mature seeds to understand its high adaptability to harsh environmental conditions on the basis of molecular biology. The calli were efficiently induced (about $70\%$) from mature seeds on MS medium supplemented with $1.5\;\cal{mg/L}$ 2,4-D. Somatic embryos were formed from the surface of embryogenic callus on MS medium supplemented with $2.0\;\cal{mg/L}\;kinetin\;and\;0.5\;\cal{mg/L}$ NAA after 3 weeks of culture. Roots were induced from the shoot when transferred to MS medium without plant growth regulator for 1 week. Plant regeneration rate was $36\%$ and regenerated plantlets were grown to normal mature plants in pot. An efficient plant regeneration system in this study will be useful for molecular breeding of L. chinensis.

Genetic Transformation of Sweet Potato by Particle Bombardment (Particle Bombardment에 의한 고구마의 형질전환)

  • 민성란;정원중;이영복;유장렬
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.5
    • /
    • pp.329-333
    • /
    • 1998
  • $\beta$-Glucuronidase (GUS) gene of Escherichia coli was introduced into sweet potato (Ipomoea batatas (L.) Lam.) cells by particle bombardment and expressed in the regenerated plants. Microprojectiles coated with DNA of a binary vector pBI121 carrying CaMV35S promoter-GUS gene fusion and a neomycin phosphotransferase gene as selection marker were bombarded on embryogenic calli which originated from shoot apical meristem-derived callus and transferred to Murashige and Skoog (MS) medium supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid and 100 mg/L kanamycin. Bombarded calli were subcultured at 4 week intervals for six months. Kanamycin-resistant calli transferred to MS medium supplemented with 0.03 mg/L 2iP, 0.03 mg/L ABA, and 50 mg/L kanamycin gave rise to somatic embryos. Upon transfer to MS basal medium without kanamycin, they developed into plantlets. PCR and northern analyses of six regenerants transplanted to potting soil confirmed that the GUS gene was inserted into the genome of the six regenerated plants. A histochemical assay revealed that the GUS gene was preferentially expressed in the vascular bundle and the epidermal layer of leaf, petiole, and tuberous root.

  • PDF

Effect of exogeneous plant growth regulators on morphogenetic response in vitro by embryo and leaf cultures of Camellia sinensis(L.) O. Kuntze (차나무 잎과 배 배양에 있어서 식물 생장조절물질이 형태형성에 미치는 영향)

  • PARK, Young Goo;AHN, In-Suk;BOZHKOV Peter
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.3
    • /
    • pp.129-135
    • /
    • 1997
  • Morphogenetic responses were investigated by culturing embryo and leaf explants of Korean wild type tea plant, Camellia sinensis (L.) O. Kuntze. Induction of direct somatic embryogenesis as well as adventitious and/or axillary shoots was obtained from mature zygotic embryo cultures on Murashige and Skoog (MS) basal medium having 5 to $20\mu\textrm{M}$cytokinin a lone. Morphogenetic response was decreased dramatically by the addition of auxins tested. One hundred percent of induced and isolated shoots formed roots after four weeks of culture on half-strength MS or quarter-strength Schenk and Hildebrandt (SH) media supplemented with $10\mu\textrm{M}$indole-3-butyric acid (IBA). Immature zygotic embryos were shown to be a suitable explant for embryogenic callus formation in the presence of 2, 4-dichlorophenoxyacetic acid(2, 4-D) in basal medium. Mature zygotic embryo originated leaves were used to test their ability for mophogenesis by incorporating plant growth regulators such as IBA, naphthyl-1-acetic acid (NAA), and 6-benzylaminopurine (BAP). Apparently, the morphogenetic responses of the cultured explant sources on the types and/or levels of plant growth regulators tested were observed visually.

  • PDF

In vitro Culture and Acclimatization of Regenerated Plants of Liliem cernum $K_{OMAROV}$ (솔나리 기내배양 및 재분화 식물체의 토양순화)

  • Kim, H.K.;Lim, Jung-Dae;Hyun, Tae-Kyung;Lee, Hyeon-Yong;Lee, Jin-Ha;Yu, Chang-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.9 no.4
    • /
    • pp.310-317
    • /
    • 2001
  • The regenerated-bulblets placed in liquid free media resulted in good formation of roots and bulblets. On 1/4 MS free medium, roots and bulblets were predominantly induced. The 1/4 MS liquid medium supplemented with plant growth regulators was the best suitable condition for elongation of leaves and roots. Somatic embryos were frequently developed from embryogenic callus in liquid media with 2,4-D 1mg/ l . On free liquid media, the viability of callus reduced. As the salt strength of MS media reduces, the viability of callus reduced significantly. However, Leaves were induced from several callus clumps. When leaves, roots and bulb-scale segments were placed on MS media containing NAA 1mg/ l or 2,4-D 1mg/ l and various sucrose concentration, the best result about the differentiation, growth of leaf and the differentiation of leaf was obtained on MS media added 1.5% sucrose and 2,4-D 1mg/ l, 3% sucrose and NAA 1mg/ l, and 1.5% sucrose and NAA 1mg/ l, respectively. Also the better result differentiation, growth of root and differentiation of bulb was obtained on MS media with 6% sucrose and NAA 1mg/ l. Spermidine promoted the growth of leaf and the differentiation of bulb. However, spermine promoted the differentiation of leaf, the differentiation and the growth of root in MS solid media. On the MS liquid media, both spermine and spermidine stimulated organogenesis from bulb-scale segments. Regenerated plantlets were acclimatizated and grown in greenhouse in vermiculite + perlite (1 : 1 by volume) well. The optimal soil condition of rooting for plantlets regenerated was in peat moss.

  • PDF