• Title/Summary/Keyword: somatic embryo germination

Search Result 51, Processing Time 0.029 seconds

Factors influencing somatic embryo maturation, high frequency germination and plantlet formation in Terminalia chebula Retz.

  • Anjaneyulu, C.;Giri, C.C.
    • Plant Biotechnology Reports
    • /
    • v.2 no.2
    • /
    • pp.153-161
    • /
    • 2008
  • The factors influencing somatic embryo maturation, high frequency somatic embryo germination, and plantlet formation were studied in Terminalia chebula Retz. Maturation of somatic embryo were influenced by a number of factors such as in vitro culture passage, concentrations of sucrose, levels of abscisic acid (ABA), basal media and media additive combinations. Maximum frequency of somatic embryo maturation ($57.22{\pm}2.02$), was obtained on MS medium supplemented with 50 g/l sucrose. Different factors such as strengths of MS nutrients, plant growth regulators, media additives and their combinations controlling somatic embryo germination and plantlet formation were studied. High frequency of germination and plantlet formation ($58.80{\pm}1.47$) were achieved by subsequent subculture of mature somatic embryos on MS medium containing 30 g/l sucrose and 0.5 mg/l benzyl-adenine (BA). However, although duration of in vitro passage of the callus tissue was critical, contribution of the combinations of plant growth regulators and media additives showed nugatory effect on somatic embryo maturation and germination as evident from variable responses.

Somatic Embryogenesis - Apical Meristems and Embryo Conversion

  • Yeung, Edward C.;Stasolla, Claudio
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.4
    • /
    • pp.299-307
    • /
    • 2000
  • A large amount of information is currently available for somatic embryogenesis of plants. However, one common problem related to somatic embryos is that the conversion rate can be low for some species. Apical meristems are responsible for post-embryonic growth of the embryo. The low percentage observed is most likely a result of poor apical meristem development or defects in the meristem organization during somatic embryogenesis. In flowering plants, apical meristems are well developed by the late heart stage of zygotic embryo development. In conifers, such as white spruce, apical meristems are formed at the pre-cotyledon stage. Thus, apical meristem development occurs very early, prior to the maturation stage of embryo development. Once formed, meristems are stably determined. In the somatic embryo, as exemplified by white spruce, since embryo development is not synchronous, tissue differentiation including apical meristem formation occurs throughout the“maturation”stage. Different apical meristem organizations can be found among different individuals within a population. In contrast to their zygotic counterparts, the apical meristems appear not to be stably determined as their organization, as the shoot apical meristem especially, can be easily modified or disrupted. Precocious germination seldom results in functional plantlets. All these observations suggest that the conditions for somatic embryo maturation have not been optimized or are not suitable for meristem formation and development. The following strategies could improve meristem development and hence conversion: 1. Simulate in ouuio conditions to promote meristem development prior to the“maturation”treatment.2. Prevent deterioration of apical meristem organization during somatic embryo maturation.3. Promote further meristem development during embryo germination.

  • PDF

Effect of dark incubation in germination of indirect date palm somatic embryos and conversion into plantlets

  • Mansour Abohatem;Yousra Al-Qubati;Hanan Abohatem
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.267-274
    • /
    • 2023
  • All studies on date palm somatic embryogenesis have focused on germination in the presence of light while neglecting germination in darkness, which mimics the germination process of zygotic embryos within seeds. To improve the date palm micropropagation protocol, we investigated the effects of light and darkness incubation on the germination of indirect date palm somatic embryos and their subsequent conversion into plantlets. Darkness incubation emerged as a pivotal factor in the germination of indirect date palm somatic embryos and their successful conversion into plantlets. Darkness incubation significantly decreased the time required for the conversion of indirect somatic embryos into plantlets, halving the duration from 24 weeks to only 12 weeks. The micropropagation protocol was modified, consolidating the previous two distinct stages of germination and elongation under light incubation into a single stage under darkness incubation. These findings modified the protocol and significantly reduced the overall duration of the date palm micropropagation protocol.

Somatic embryo induction and plant regeneration from cold-stored embryogenic callus of K. septemlobus (저온저장 음나무 배발생 캘러스로부터 체세포배 유도와 식물체 재생)

  • Lee, Na Nyum;Choi, Yong Eui;Moon, Heung Kyu
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.388-395
    • /
    • 2015
  • Somatic embryogenesis is as an excellent technology for potential use in plant mass production, germplasm conservation, or genetic engineering. We examined the effect of cold storage using 3 embryogenic callus lines with different levels of embryogenesis competence derived from immature zygotic embryo cultures of Kalopanax setemlobus. Somatic embryo induction, germination and plant conversion were evaluated after 1, 3 and 6 months storage at $4^{\circ}C$ in the dark. Most cold-stored embryogenic calli formed somatic embryos normally even after 6 months; however, the induction rate was gradually decreased by increasing the storage period. The most competent line tended to show a slight decline in somatic embryo induction rate, as compared with other lines after cold storage. In general, cold storage resulted in reduced somatic embryo germination and plant regeneration, although 93% somatic embryo germination and 91% plant conversion were achieved regardless of the storage period. Cold storage led to cell browning and degradation. Additionally, the cell structures were confirmed by the aceto-carmine and evans blue dye evaluation. Collectively, our results showed that embryogenic callus of K. septemlobus could be preserved at $4^{\circ}C$ without subculture for 6 months, and suggested the need for storage of relatively more competent embryogenic calli lines to support somatic embryo induction.

Effect of TIBA, PCIB and phloroglucinol on somatic embryo maturation and germination in Japanese larch (Larix leptolepis) (낙엽송의 체세포배 발생 및 발아에 미치는 TIBA, PCIB 및 phloroglucinol의 효과)

  • Kim, Yong-Wook;Moon, Heung-Kyu
    • Journal of Plant Biotechnology
    • /
    • v.36 no.3
    • /
    • pp.230-235
    • /
    • 2009
  • The effect of auxin transport inhibitor (TIBA and PCIB) or auxin synergist (phloroglucinol) on somatic embryo maturation and germination in Japanese larch (Larix leptolepis) was examined. The addition of 15.8 mg/L ABA+5.0 mg/L PCIB showed most promoted the maturation of cotyledon -staged somatic embryos (177.7/90 mg ESM). In contrast, with treatment of 5.0 mg/L PCIB or 5.0 mg/L TIBA, no somatic embryos were obtained. Considering from this result, PCIB or TIBA alone could not substitute for exogenously supplied ABA for maturation of somatic embryos. In the test of below concentration of 5.0 mg/L PCIB, the highest results were recorded in 15.8 mg/L ABA+2.0 mg/L PCIB (109.3/90 mg ESM) or 15.8 mg/L ABA+5.0 mg/L PCIB (103.7/90 mg ESM). However, 5.0 mg/L phloroglucinol (0/90 mg ESM) or no ABA addition (3/90 mg ESM) had little influence on somatic embryos maturation. In germination study, the highest frequency of plantlet regeneration obtained from the somatic embryos which had matured on 15.8 mg/L ABA+5.0 mg/L PCIB (67.9%). However, either 5.0 mg/L PCIB nor 5.0 mg/L TIBA resulted in obtained from plantlets.

Development of a Protocol for Somatic Embryogenesis of Cnidium officinale M akino

  • Hui Yeong Jeong;Ji Ah Kim
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.51-51
    • /
    • 2021
  • This study was conducted to develop a somatic embryogenesis protocol for the Cnidium officinale Makino difficult to seed propagation. The immature flowers were used as explants. The concentration of a 2,4-D 1.0mg/L was found to be optimal concentration for induction of embryogenic callus and somatic embryos. Addition of 0.3mg/L, 0.5mg/L and 1.0mg/L to the embryo germination medium promoted somatic embryo germination. Among four concentrations, GA3 1.0mg/L were superior to others. Shoots were transferred to hormone-free MS medium after 2 months of culture in the dark. We obtained an optimized protocol for the regeneration of C. officinale.

  • PDF

Protein Synthesis during Somatic Embryo Development and Artificial Seed Germination of Apium graveolens L. after Abscisic Acid or Cold Treatment (쎌러리(Apium graveolens L.)의 체세포배 발생 및 인공종자 발아에 있어서 앱시스산 및 저온처리에 의한 단백질 합성)

  • 소웅영;여읍동;소상섭;조덕이
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.1
    • /
    • pp.15-22
    • /
    • 1994
  • To understand the molecular mechanism of hardening process in somatic embryo development and artificial seed germination in celery (Apium graveolens L.), the changes of protein synthesis by ABA or cold teatment at early globular stage were examined. Protein content and nitrate reductase activity in ABA- or cold-treated somatic embryo and seedlings were higher than that in unheated ones. The protein content and nitrate reductase activity were more prominent in somatic embryos than in seedlings. From two-dimensional electrophoresis, several protein spots specific to ABA or cold treatment were identified: 30 KD, 32 KD, 171 KD and 205 KD at heart-shaped stage; and 29 KD, 33 KD, 37 KD, 38 KD, 41 KD, 55 KD, 66 KD, and 110 KD at cotyledonary stage were the most specifically synthesized However the synthesis of certain polypeptides were repressed at heart-shaped or cotyledonary stage: 42 KD, 44 KD, 59 KD, 64 KD, 101 KD, 104 KD, and 190 KD at heart-shaped stage; and 29 KD and 116 KD at cotyledonary stage. The protein pattern changes by ABA or cold treatment occurred simultaneously and mainly in acid-soluble proteins during somatic embryo development and artificial seed germination. Therefore it is suggested that the metabolic changes for adaptation to environmental change occur during somatic embryo development and the germination and growth of seedling from embryo.

  • PDF

A Protocol for High Frequency Plant Conversion from Somatic Embryos of Peanut (Arachis hypogaea L. cv. DRG-12)

  • Rani A. Raja;Padmaja G.
    • Journal of Plant Biotechnology
    • /
    • v.7 no.3
    • /
    • pp.187-193
    • /
    • 2005
  • A protocol was developed for somatic embryogenesis with 100% induction rate from immature zygotic embryo axes of peanut (Arachis hypogaea L. cv. DRG-12) cultured on MS medium containing $18.09\;{\mu}M$ 2,4-D. The frequency of somatic embryogenesis (31.7%) as well as the number of somatic embryos induced per explant (6.6) decreased when the concentration of 2,4-D was increased to $72.4\;{\mu}M$. Morphologically abnormal somatic embryos were observed at a frequency of 43.3% on MS medium containing $72.4\;{\mu}M$ 2,4-D. Somatic embryos isolated from 30-day-old cultures of immature zygotic embryo axes exhibited precocious germination with varied responses when placed on MS basal medium with 3% sucrose. Maximum shoot induction (80.0%) was observed from somatic embryos isolated from 60-day-old cultures of immature zygotic embryo axes when placed as a clump rather than individually on MS medium supplemented with $26.63\;{\mu}M$ BA and $0.54\;{\mu}M$ NAA. Shoots developed from somatic embryos rooted with higher frequency (93.3%) on Blaydes' medium containing $5.4\;{\mu}M$ NAA.

Morphological Observation of Somatic Embryogenesis in Leaf Explant Cultures of Bupleurum falcatum L. (시호(Bupleurum falcatum L) 잎절편으로부터 형성된 체세포배 발생의 형태학적 관찰)

  • 조덕이;소웅영
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.5
    • /
    • pp.291-298
    • /
    • 1995
  • This study describes plant regeneration from leaf explant of Bupleurum falcatum through somatic embryogenesis, and the effect of 2,4-dichlorophenoxyacetic acid on somatic embryo abnormalities. The relationship between the cotyledon number of somatic embryo and its germinability is also described. Embryogenic calli were selected from calli formed on explants cultured on MS solid basal medium supplemented with 1 mg/L 2,4-D. Cotyledonary abnormalities were observed in somatic embryos which were developed from calli cultured on MS medium with 1 mg/L 2,4-D for 6-week and then subcultured on 2,4-D free MS medium for 3 weeks. The frequency of abnormalities was as follows: 7% of somatic embryos had one cotyledon, 65% of them had two cotyledons, 25% three cotyledons, 5% four cotyledons, 2% five cotyledons, and 3% trumpet-like cotyledons. The two cotyledon somatic embryos were germinated at a frequency of 80%. However the germination frequency of one cotyledon embryo and multicotyledonary embryo was lower than that of the two cotyledon somatic embryo. All of trumper-like somatic embryos did not germinate. Histological observations of multicotyledon embryo showed circular procambium in the root but pocambial strands in the cotyledonary node or upper hypocotyl. The number of the strands was equal to the cotyledon number.

  • PDF

Direct somatic embryogenesis, plant regeneration and genetic transformation of Panax ginseng

  • Park, Yong-Eui;Yang, Deok-Chun;Park, Kwang-Tae;Soh, Woong-Young;Hiroshi Sano
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.85-89
    • /
    • 1999
  • Somatic embryogendesis is one of good examples of the basic research for plant embryo development as well as an important technique for plant biotechnology. This paper describes the direct somatic embryogenesis from zygotic embryos of Panax ginseng is reversely related to normal axis growth of zygotic embryos by the experiment of various chemical treatments. Under the normal growth condition, the apical tips of embryo axis produced an agar-diffusible substance, which suppressed somatic embryo development from cotyledons. Although the cells of zygotic embryos were released from the restraint of embryo axis, various factors were still involved for somatic embryo development. Electron microscopic observation revealed that the ultrastructure of cells of cotyledon epidermis markedly changed before initiation of embryonic cell division, probably indicating reprogramming events into the cells embryogenically determined state. Polar accumulation of endogenous auxin or cell-cell isolation by plasmolysis pre-treatment is the strong inducer for the somatic embryo development. The cells for the process of somatic embryogenesis might be determined by the physiological conditions fo explants and medium compositions. Direct somatic embryos from cotyledons fo ginseng were originated eithrer from single or multiple cells. The different cellular origin of somatic embryos was originated either from single or multiple cell. The different cellular origin of somatic embryos was depended on various developmental stages of cotyledons. Immature meristematic cotyledons produced multiple cell-derived somatic embryos, which developed into multiple embryos. While fully mature cotyledons produced single cell-derived single embryos with independent state. Plasmolysis pretreatment of cotyledons strongly enhanced single cell-derived somatic embryogenesis. Single embryos were converted into normal plantlets with shoot and roots, while multiple embryos were converted into only multiple shoots. GA3 or a chilling treatment was prerequisite for germination and plant conversion. Low concentration of ammonium ion in medium was necessary for balanced growth of root and shoot of plantlets. Therefore, using above procedures, successful plant regeneration of ginseng was accomplished through direct single embryogenesis, which makes it possible to produce genetically transformed ginseng efficently.

  • PDF