• Title/Summary/Keyword: somatic chromosome number

Search Result 78, Processing Time 0.025 seconds

Production of Putative Somatic Hybrid of Petunia hybrida and. Nicotiana sanderae by Protoplast Fusion (Petunia hybrida와 Nicotiana sanderae의 원형질체융합에 의한 잠정적 체세포잡종 식물체 생산)

  • 정재동;노영희;최수옥;지선옥
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.2
    • /
    • pp.105-110
    • /
    • 1995
  • The experiment were carried out to obtain a somatic hybrid through protoplast fusion between P.hybrid and N. sanderae. The isoenzyme pattern he chromosome number and the phonotype were observed for genetic study on the regenerants obtained from the fusion product cultures. Putative somatic hybrids possessed all the bands that appeared in both mother plane. A specific band was found on the top of the banding pattern which was assumed to be a marker band of somatic hybrid between two genera. Aspartate amninotransferase isoenzyme bands which were found in both mother plane were also revealed in the putative somatic hybrids or deleted in the upper part of H. sanderae band pattern. The chromosome number of P.hybrida was 2n=14, while N, sanderae was 2n=18,but the number of the putative somatic hybrids ranged from n=32 to 36. The phonotype of putative somatic hybrids was intermediate of the mother plants.

  • PDF

A cytotaxonomic study of Atractylodes japonica Koidz. ex Kitam. and A. macrocephala Koidz.

  • Chung, Gyu-Young;Kim, Mi-Suk
    • Plant Resources
    • /
    • v.3 no.3
    • /
    • pp.179-183
    • /
    • 2000
  • The present study was carried out to clarify the chromosome numbers and karyotype of Atractylodes japonica Koidz. ex Kitam. and A. macrocephala Koidz.. The somatic chromosome numbers of two species were same; basic chromosome number x=12, and somatic chromosome numbers 2n=24. The present result of A. japonica Koidz. ex Kitam. was same to previously reports and that of A. macrocephala Koidz. was reported first in this study. Size and shape of chromosome were some different from A. japonica Koidz. ex Kitam. and A. macrocephala Koidz.. The karyotype of A. japonica Koidz. ex Kitam. was described as follows; 2n : 24 : 8L + 14M +2S : 2 $A^{sm}$ +2 $B^{m}$ +2 $C^{m}$ +2 $D^{st}$ + 2 $E^{m}$ +2 $F^{m}$ +2 $G^{m}$ +2 $H^{sm}$ + 2 $I^{m}$ + 2 $J^{m}$ + 2 $K^{m}$ + 2 $L^{m}$ . And the karyotype of A. macrocephata Koidz. was described as follows; 2n : 24 : 10L +12M +25 : 2 $A^{m}$ +2 $B^{sm}$ +2 $C^{sm}$ +2 $D^{sm}$ +2 $E^{sm}$ +2 $E^{sm}$ +2 $G^{sm}$ +2 $H^{m}$ +2 $I^{m}$ 2 $J^{m}$ +2 $K^{m}$ +2 $L^{m}$ . .

  • PDF

Chromosome number of four Korean species of Leontopodium(Asteraceae) (한국산 솜다리속(국화과) 4종의 염색체수)

  • Lee, Dong-Hyuk;Chung, Gyu Young;Choi, Byoung-Hee
    • Korean Journal of Plant Taxonomy
    • /
    • v.40 no.3
    • /
    • pp.153-156
    • /
    • 2010
  • The somatic chromosome number of four Korean species of Leontopodium were investigated. The chromosome number of L. leiolepis (2n = 24) is reported here as for the first time. The chromosome number of L. japonicum (2n = 28) is not varied among the 3 populations on the Korean Peninsula, but that condition is different from the previous reports for Korea (2n = 26) and Japan (2n = 21, 26). L. hallaisanense and L. japonicum, both of which are in sect. Nobilia and similar to each other in gross morphology, have the same chromosome number of 2n = 28. On the other hand the chromosome number of Korean L. leontopodioides (2n = 24) is different from that in Russian reports (2n = 26). The chromosome numbers of all Korean species of the genus Leontopodium could be inferred as tetraploid or aneuploid.

Control of X Chromosome Reactivation and Determination of the Ratio of Sex Chromosome to Autosome in Embryonal Carcinoma Cell-Somatic Cell Hybrids (배종양 세포와 체세포 간의 융합 세포에서 X 염색체 재활성화의 조절과 성염색체에 대한 상염색체 비율의 결정)

  • 이광호
    • The Korean Journal of Zoology
    • /
    • v.39 no.1
    • /
    • pp.75-88
    • /
    • 1996
  • OTF9-63 (OTF9) and P19S1O1A1 (P19) embryonal carcinoma (EC) cells were examined for their ability to produce the readivation of inactive X chromosomes from somatic cells. They were hybridized with various somatic cells and resulting HATr EC-somatic cell clones were analysed for their morphology, chromosomal replication pafterns and expression proffies of X-linked and distantiy located genes, Hprt and Pgk-1. The results demonstrated that 0RF9 cells could reactivate the inactive X chromosome whereas P19 cells could not. In adition, EC-somatic cell hybrids tended to reduce the number of sex chromosomes in long-term culture, resulting m 1:2 ratio of sex chromosomes to autosomes The use of EC cell hybrids provides an experimental system for studying the mechanism(s) of the X-reactivatio that is initiated and maintained from meiotic prophase of oogenesis to early embryogenesis.

  • PDF

The Study on Chromosome Number of Morus bombycis Koidz., Morus Mongolica C.K.Schn.and Morus tiliaefolia Makino Growing Wild in the Korea Peninsula (한반도에 자생하는 산뽕나무(Morus bombycis Koidz.), 몽고뽕나무(Morus mongolica C.K. Schn.) 및 돌뽕나무(Morus tiliaefolia Makino)의 염색체수)

  • 박광준
    • Journal of Sericultural and Entomological Science
    • /
    • v.43 no.1
    • /
    • pp.53-54
    • /
    • 2001
  • The chromosome number of Morus bombycis Koidz. and Morus monogolica C.K.Schn. growing wild in the Korea Peninsula is diploid (2n=28) and that of Morus tiliaefolia Makino is hecxaploid (2n=84). The somatic cell division of each species is nomal.

  • PDF

Chromosome study of Galium elegans and G. asperifolium (Rubiaceae) from Yunnan, China (중국 Yunnan 지역 갈퀴덩굴속 식물에 대한 염색체 연구)

  • Jeong, Keum Seon;Lee, Sang Woo;Pak, Jae-Hong
    • Korean Journal of Plant Taxonomy
    • /
    • v.39 no.3
    • /
    • pp.216-219
    • /
    • 2009
  • The somatic chromosome of two taxa, Galium elegans Wall. ex Roxb(Sect. Cymogaliea Pobed) and Galium asperifolium Wall. ex Roxb(Sect. Leptogalium Lang), in Yunnan, China were investigated. The taxa were reported for the first time. The somatic chromosome numbers of G. elegans was 2n = 22(X = 11), diploid, from two regions, Mt. Canghsan and Hutiaoxia Valley. Those of G. asperifolium were found as 2n = 33, 44, 55(X = 11) with triploid, tetraploid, pentaploid. Most of G. elegans in the Yunnan were confirmed as diploid. The somatic chromosome number of G. asperifolium was found polyploidy, and the investigation revealed that triploid and tetraploid are living together as mixed population in the Mt. Canghsan.

A taxonomic study of Korean Artemisia L. using somatic chromosome numbers (한국산 쑥속의 체세포 염색체수에 의한 분류학적 연구)

  • Park, Myung Soon;Jang, Jin;Chung, Gyu Young
    • Korean Journal of Plant Taxonomy
    • /
    • v.39 no.4
    • /
    • pp.247-253
    • /
    • 2009
  • Somatic chromosome numbers for 20 taxa of Korean Artemisia L. were investigated for the purpose of classification. Somatic chromosome numbers of treated taxa were 2n = 16, 18, 34, 36, 50, 52, 54, and therefore their basic chromosome numbers were x = 8, 9, 10, 13, 17. The chromosome number of A. japonica var. angustissima is being reported for the first time in this study. The chromosome numbers of 13 taxa were the same as in previous reports; A. capillaris (2n = 18), A. japonica var. hallaisanensis (2n = 36), A. japonica subsp. littoricola (2n = 36), A. annua (2n = 18), A. carvifolia (2n = 18), A. fukudo (2n = 16), A. keiskeana (2n = 18), A. stolonifera (2n = 36), A. sylvatica(2n = 16), A. selengensis (2n = 36), A. montana (2n = 52), A. lancea (2n = 16), A. sieversiana (2n = 18); however, the chromosome numbers of 6 taxa were different; A. japonica var. japonica (2n = 18, 36 vs 2n = 36), A. sacrorum (2n = 18, 54 vs 2n = 54), A. rubripes (2n = 16, 34 vs 2n = 16), A. indica (2n = 34, 36 vs 2n = 34), A. codonocephala (2n = 18, 50, 54 vs 2n = 50), A. argyi (2n = 34, 36, 50 vs 2n =34). The somatic chromosome numbers of Korean Artemisia are thought to be good characteristics for classifying some taxa such as A. japonica var. japonica, A. sacrorum, A. codonocephala, A. argyi, A. montana, A. sylvatica.

A cytotaxonomic study of Galium (Rubiaceae) in Korea (한국산 갈퀴덩굴속(Galium L.)의 세포분류학적 연구)

  • Jeong, Keum Seon;Pak, Jae-Hong
    • Korean Journal of Plant Taxonomy
    • /
    • v.39 no.1
    • /
    • pp.42-47
    • /
    • 2009
  • In this study, the somatic chromosome of 14 taxa of Korean Galium L. were investigated. Among them were a few taxa for which the somatic chromosome number was determined for the first time. The somatic chromosome numbers of Korean Galium L. were 2n = 22, 24, 44, 48, 66, 72, 77, 88 and so basic chromosome numbers were x = 11 or 12. Those taxa having the basic chromosome number x = 11 showed polyploidy, including diploid, tetraploid, heptaploid, and octoploid. Tetraploid and hexaploid can be observed in those taxa with the basic number x = 12. The eleven taxa reported 11 for the first time are G. spurium var. echinospermon (Wallr.) Hayek (2n = 44), G. gracilens (A. Gray) Makino (2n = 22), G. pogonanthum Franch. & Sav. (2n = 22, 44), G. trachyspermum A. Gray (2n = 22, 44), G. japonicum (Maxim.) Makino & Nakai (2n = 77), G. trifloriforme Kom. (2n = 44), G. dahuricum Turcz. var. dahuricum (2n = 48, 72), G. dahuricum var. tokyoense (Makino) Cufod. (2n = 22), G. kinuta Nakai & Hara (2n=66), G. verum var. trachycarpum for. nikkoense (Nakai) Ohwi (2n = 44), G. verum var. asiaticum for. pusillum (Nakai) M. Park (2n = 44). The taxa with the same chromosome numbers as previously reported ones were G. boreale L. (2n=22) and G. verum var. asiaticum Nakai for. asiaticum (2n = 44). The chromosome number of G. trifidum L. (2n = 22) was different from the previous report. Two infraspecific taxa of G. dahuricum showed differences in their basic chromosome numbers (x = 11 for G. dahuricum Turcz. var. dahuricum and x = 12 for var. tokyoense (Makino) Cufod. The somatic chromosome number for G. dahuricum Turcz. var. dahuricum was found to be 2n = 48 (tetraploid) or 72 (hexaploid), while that of G. dahuricum var. tokyoense (Makino) Cufod. was found to be 2n = 22 (diploid). Therefore, basic chromosome numbers for members of the genus Galium can be used as valuable characters in delimiting infrageneric sections and investigating interspecific relationships.

Karyotype of Lilium Miqueliannum Makino (하늘말나리의 핵형)

  • 손진호
    • Journal of Plant Biology
    • /
    • v.14 no.4
    • /
    • pp.14-18
    • /
    • 1971
  • Lilium Miquelianum Makino is a species which originated in Korea. The Karyotype of the species was examined in materials collected at Mts. Kaya, Kasan, Chejung, and Kaji. The results are as follows: 1) The somatic chromosome number was found to be 2n=24. 2) The karyotype is described as: K=2Am+2Bkm+2Csst+2Dsst+2Ests+2Fst+2Gst+2Hst+2Ist+2Jsst+2Kst+2Lst m: metacentric, sm: submetacentric st: subtelocentric, s: secondary constriction 3) A single subcentric supernumerary B-chromosome was found in some bulbs from Mt. Kasan. 4) The shape of the supernumerary B-chromosome was similar to that of the E chromosome which had separated at its secondary constriction and lost its lower chromosome fragment. 5) From three to eight nucleio of varying sizes were found in the telophase or interphase nucleus of root tip cells. The maximum number of eight nucleoli corresponds to the number of chromosomes that have a secondary constriction.

  • PDF