• Title/Summary/Keyword: solvent-resistance

Search Result 236, Processing Time 0.021 seconds

Effects of Brush Coating of Ag Nanowire Solution and Annealing using Plasma Process for Flexible Electronic Devices (유연 전자소자용 금속 전극 제조를 위한 Ag Nanowire 용액의 Brush 코팅 및 플라즈마 공정을 이용한 어닐링)

  • Kyoung-Bo Kim
    • Journal of Industrial Convergence
    • /
    • v.21 no.3
    • /
    • pp.189-194
    • /
    • 2023
  • Recently, various studies on flexible electronic devices have been performed. In this study, the potential of Ag nanowires was evaluated as a material to replace the ITO transparent conductive film. Ag nanomaterials were formed on the glass by a novel brush coating method and an argon plasma evaporation method based on atmospheric pressure plasma. First, the Ag solution is coated on the glass with a brush, and the remaining solvent is removed with atmospheric plasma. During this process of solvent evaporation, a sound is generated by the reaction between the atmospheric plasma and the solvent. Therefore, the remaining amount of the solvent can be confirmed. In order to observe optical properties and electrical results such as reflectance, transmittance, and absorbance according to the number of coatings of the film, the results were analyzed by coating up to 5 times. For the purpose of investigating the interaction of light with Ag nanowires, reflectance and transmittance were measured while changing the wavelength of light from 200 nm to 800 nm. In the case of absorbance, the trend of increasing light absorption of the Ag nanowires according to the coating was clearly confirmed. The electrical properties showed a great change from the time of coating more than 4 times, and in particular, the resistance value was lower than kΩ/cm2 when the coating was applied 5 times. Based on these optical and electrical results, we plan to verify the possibility of a transparent conductive film by applying it to electronic devices in the future.

Flow Characteristics, Mechanical Properties and Chemical Resistance of Polycarbonate/Polybutylene Terephthalate/Impact Modifier Blends (Polycarbonate/polybutylene Terephthalate/Impact Modifier 블렌드의 유동특성, 기계적 성질 및 내화학성)

  • 류민영
    • Polymer(Korea)
    • /
    • v.26 no.2
    • /
    • pp.237-244
    • /
    • 2002
  • Mechanical properties, flow characteristics and chemical resistance of polycarbonate (PC)/polybutylene terephthalate (PBT) /impact modifier (IM) blends were investigated over the various composition ranges of PC and PBT. Mechanical properties of the PC/PBT/IM blends for different IMs, butadiene based IM and butyl acrylate based IM, were studied for various compositions of the IMs. Impact strength at low temperature was also observed. For the study of chemical resistance of the PC/PBT/IM blends, the blonds were dipped in organic solvent, thinner, and then variations of mechanical properties were analyzed. Tensile and flexural strengths were increased linearly and heat distortion temperature (HDT) also increased as PC content in the blends increased. Impact strength increased drastically as PC content increased up to 50 wt% and stayed stable value. Flowability decreased as PC content increased. Impact strengths of the blend were various for different IMs. Butyl acrylate based IM showed slightly higher impact strength than butadiene based IM for the temperature above $0^{\circ}C$. However, butadiene based IM showed remarkably higher impact strength than butyl acrylate based IM for the temperature below $0^{\circ}C$. Through the experiment of chemical resistance it was observed that tensile and flexural strengths decreased, and impact strength increased as PC content in the blends increased. PC in the blend would become mild and ductile when it contacted with organic solvent. Thus the impact strength increased while tensile and flexural strength decreased.

Structural and Rheological Characterization of Polymer Nanocomposites (고분자 나노복합재료의 내부 구조 및 유변학적 성질)

  • Seong, Dong-Gil;Youn, Jae-Ryoun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.195-197
    • /
    • 2003
  • Polymer layered silicate nanocomposite has become an important area of polymer research becaues of its predominant properties in mechanical and thermal properties. Polymer layered silicate nanocomposites show outstanding improvements in tensile strength and modulus, heat distortion temperature, gas and liquid permeability, solvent resistance, and so on. But These improved properties are realized only when silicate particles are well dispersed in polymer matrix. (omitted)

  • PDF

A Study for Treatment of Used Electrical Insulating Oil (廢電氣絶緣油 精製法에 관한 연구)

  • Kim, Ju-Hang
    • Tribology and Lubricants
    • /
    • v.1 no.1
    • /
    • pp.59-68
    • /
    • 1985
  • Processes such as vacuum distillation, mixed solvent extraction, neutralization and clay treatment were used to refine an electrical insulating oil, The improved reused oil showed an excellent copper corrosion resistance and gave a better oder than that of oil refined from the conventional acid treatment method.

Effect of Shearing on Crystallization Behavior of Nylon 6/Silver Nanocomposites (전단조건이 나일론 6/은 나노복합소재의 결정화거동에 미치는 영향)

  • Chae, Dong-Wook;Oh, Seong-Geun;Kim, Byoung-Chul
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.321-324
    • /
    • 2002
  • Recently, organic-inorganic nanocomposites have attracted great interest from researchers since they frequently exhibit unexpected hybrid properties synergistically derived from two components[1]. The addition of highly dispersed inorganic nano-sized fillers permits improvement of certain properties of polymers as compared with conventional particulate composites; increase of modulus and strength, improved barrier properties, increase in solvent and heat resistance, and good optical properties[2]. (omitted)

  • PDF

Transparent Electrode based on Poly(3,4-ethylenedioxythiophene)

  • Song, Keuk-Ryoul;Min, Hye-Kyoung;Oh, Eung-Ju;Kim, Yong-Bae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.578-580
    • /
    • 2003
  • PEDOT [poly(3,4-ethylenedioxythiophene)] powder soluble in common organic solvent were synthesized by oxidative polymerization of EDOT (3,4-ethylene dioxythiophene) monomer using functional dopant, DEHSNa [sodium di(2-ethylhexyl)sulfosuccinate]. Transparent electrodes were made by spin casting of PEDOT/organic solvents on substrates. The electrode showed the transmittance < 90% in visible region and the surface resistance of> ${\sim}10^3\;ohm/{\square}$, respectively.

  • PDF

The Major Developments of the Evolving Reverse Osmosis Membranes and Ultrafiltration Membranes

  • Kurihara, Masaru
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1991.10a
    • /
    • pp.9-16
    • /
    • 1991
  • The current status of reverse osmosis and ultrafiltration membranes are reviewed with the view for the future. In the case of reverse osmosis (RO) membranes, as examples, new crosslinked aromatic polyamide membranes exhibited the superior separation performance with the sufficient water permeability, the high tolerance for oxidizing agents and chemicals. Ultrafiltration (UF) membrane based on poly(phenylene sulfide sulfone) (PPSS) also exibited the superior separation performance with the high solvent, heat and fouling resistance.

  • PDF

Thermal Cyclization of PHA and its Derivatives(I) - Model compound study - (PHA 및 그 유도체의 열적 고리화 거동 고리화 거동(I) - 모델화합물 연구 -)

  • Kim, Eun-Kyoung;Kim, Myung-Kyoon;Baik, Doo-Hyun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.361-363
    • /
    • 2001
  • Aromatic pelybenzoxazoles(PBOs) display excellent thermal stability plus good solvent and chemical resistance. Wholly aromatic PBOs, in fact, are soluble only in strong acids(e.g., sulfuric, rmethanesulfonic, triflic, and polyphosphoric acids). However, fully heterocyclized polymers have shown some drawbacks in solubility and processing. This problem of processing is currently being exploited to obtain unusual combinations of physical properties in fibers and films. (omitted)

  • PDF

The Effects of Long-Term, Low-Level Exposure to Monocyclic Aromatic Hydrocarbons on Worker's Insulin Resistance

  • Won, Yong-Lim;Ko, Yong;Heo, Kyung-Hwa;Ko, Kyung-Sun;Lee, Mi-Young;Kim, Ki-Woong
    • Safety and Health at Work
    • /
    • v.2 no.4
    • /
    • pp.365-374
    • /
    • 2011
  • Objectives: This study was designed to investigate whether long-term, low-level exposure to monocyclic aromatic hydrocarbons (MAHs) induced insulin resistance. Methods: The subjects were 110 male workers who were occupationally exposed to styrene, toluene, and xylene. One hundred and ten age-matched male workers who had never been occupationally exposed to organic solvents were selected as a control group. Cytokines, which have played a key role in the pathogenesis of insulin resistance, and oxidative stress indices were measured. Assessment of exposure to MAHs was performed by measuring their ambient levels and their urinary metabolites in exposed workers, and the resulting parameters between the exposed group and non-exposed control groups were compared. Results: There was no significant difference in general characteristics and anthropometric parameters between the two groups; however, total cholesterol, fasting glucose, fasting insulin, and homeostasis model assessment of insulin resistance levels were significantly higher in the exposed group. Phenylglyoxylic acid levels showed significant association with tumor necrosis factor-${\alpha}$, total oxidative status, and oxidative stress index via multiple linear regression analysis. Further, there was a negative correlation between methylhippuric acid levels and total anti-oxidative capacity, and there was a significant relationship between MAHs exposure and fasting glucose levels, as found by multiple logistic regression analysis (odds ratio = 3.95, 95% confidence interval = 1.074-14.530). Conclusion: This study indicated that MAHs increase fasting glucose level and insulin resistance. Furthermore, these results suggested that absorbing the organic solvent itself and active metabolic intermediates can increase oxidative stress and cytokine levels, resulting in the changes in glucose metabolism and the induction of insulin resistance.

Effect of Organic Solvents on the Electrical Properties of a Neat Epoxy Resin System

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.89-92
    • /
    • 2012
  • The effect of organic impurities on the electrical properties of a neat epoxy resin was studied. 0.05, 0.5 and 1.0 phr of iso-propyl alcohol (IPA) and methylene chloride (MC) mixture (50/50 wt%) were used as impurities. The current density, volume resistance and impedance characteristics of the epoxy/IPA/MC systems were measured with a high voltage source meter and broadband dielectric spectroscopy. Glass transition temperature (Tg) was measured by a differential scanning calorimetry (DSC) and it was found that Tg decreased slightly with increasing IPA/MC content. It was also found that Tg values of the epoxy systems with various IPA/MC contents were closely related to the current density, volume resistance and impedance characteristics.