• Title/Summary/Keyword: solvent ratio

Search Result 855, Processing Time 0.019 seconds

Optimization of Extraction Conditions for Ethanol Extracts from Chrysanthemum morifolium by Response Surface Methodology (반응표면분석에 의한 소국(小菊) 에탄올 추출물의 추출조건 최적화)

  • Park, Nan-Young;Kwon, Joong-Ho;Kim, Hyun-Ku
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.1189-1196
    • /
    • 1998
  • Extraction conditions were optimized using response surface methodology for preparing high-quality ethanol extracts from cultivated Chrysanthemum petals. A fractional factorial design was applied to investigate effects of solvent ratio to sample $(X_1)$, ethanol concentration $(X_2)$ and extraction time $(X_3)$ at $60^{\circ}C$ on dependent variables of the extract properties, such as yellow color $(Y_1)$, carotenoids $(Y_2)$, soluble solids $(Y_3)$, phenolic compounds $(Y_4)$, electron donating ability $(Y_5)$, sensory color $(Y_6)$ and sensory aroma $(Y_7)$. Second-order models were employed to generate 3-dimensional response surfaces for dependent variables and their coefficients of determination $(R^2)$ were ranged from 0.8063 to 0.9963. Optimum extraction conditions for each variable were 115 mL/g, 97%, 18 hr in yellow color, 145 mL/g, 50%, 12 hr in carotenoids, 147 mL/g, 48%, 17 hr in soluble solids, 116 mL/g, 68%, 17 hr in phenolic compounds, 110 mL/g, 98%, 14 hr in electron donating ability, 101 mL/g, 48%, 54 hr in organoleptic color and 109 mL/g, 54%, 4 hr in organoleptic aroma, respectively. The range of optimum conditions at 16hr extraction for maximized characteristics of ethanol extracts was $103{\sim}122\;mL/g$ and $64{\sim}78%$. Predicted values at the optimum condition agreed with experimental values.

  • PDF

Extraction Characteristics of Saponin and Acidic Polysaccharide Based on the Red Ginseng Particle Size (홍삼의 입자크기에 따른 사포닌 및 산성다당체의 추출 특성)

  • Cho, Chang-Won;Kim, Sang-Wook;Rho, Jeong-Hae;Rhee, Young-Kyung;Kim, Kyung-Tack
    • Journal of Ginseng Research
    • /
    • v.32 no.3
    • /
    • pp.179-186
    • /
    • 2008
  • Effect of pulverization on total solid, crude saponin, and acidic polysaccharide contents of dried red ginseng main root were tested. Several particle size samples, including red ginseng main root (non pulverized), $10{\sim}40$ mesh powder, $40{\sim}100$ mesh powder, and >100 mesh powder were used in the extraction. The sequential solvent extraction method (1st: 70% EtOH at $70^{\circ}C$ for 12 hr, 2nd: 70% EtOH at $70^{\circ}C$ for 12 hr, 3rd: water at $70^{\circ}C$ for 12 hr) was applied to extract the saponins and acidic polysaccharide. Extraction yield of total solid of pulverized red ginseng ($10{\sim}40$ mesh size) was increased to 20% compared with that of non-pulverized. Especially, the crude saponin content of pulverized red ginseng ($10{\sim}40$ mesh size) showed an increase of 47% over non-pulverized. No difference in the component ratio was observed by pulverization, when the individual ginsenosides were quantified by HPLC. Also, extraction yield of acidic polysaccharide of pulverized red ginseng ($10{\sim}40$ mesh size) was increased 57% compared with that of non-pulverized. The results suggested that pulverization might be useful for increasing the extraction yield of red ginseng components.

Monitoring on Physicochemical Properties of Liriope platyphylla by the Use of Four Dimensional Response Surface (4차원 반응표면분석을 통한 맥문동의 이화학적 특성 모니터링)

  • Lee, Gee-Dong;Kim, Jung-Ok;Son, Jun-Ho;Kim, Hak-Yoon
    • Food Science and Preservation
    • /
    • v.19 no.4
    • /
    • pp.560-568
    • /
    • 2012
  • Four dimensional response surface methodology was used to monitor the extraction conditions and predict the optimum extraction conditions on physicochemical properties of Liriope platyphylla. Maximum yield of total soluble solid was 66.02% into range of 35.06~65.70%, and maximum extraction conditions were 16.86 mL/g in ratio of solvent to sample, $99.55^{\circ}C$ in extraction temperature and 3.20 hr in extraction time. Maximum extraction conditions of total phenolics were 18.78 mL/g, $97.09^{\circ}C$ and 3.71 hr. Maximum content of crude saponin was 6.51% into range of 2.22~6.21 %, and maximum extraction conditions were 21.33 mL/g, $95.49^{\circ}C$ and 3.00 hr. Maximum content of reducing sugar was 6.75% into range of 2.43~6.51%, and maximum extraction conditions were 22.93 mL/g, $89.64^{\circ}C$ and 3.75 hr. Electron donating ability was maximized in 16.74 mL/g, $99.63^{\circ}C$ and 3.16 hr. The range of optimum conditions gained by the superimposed four dimensional response surfaces on total soluble solid, crude saponin and reducing sugar of Liriope platyphylla was 15~23 mL/g, 92~$100^{\circ}C$ and 2.4~5.0 hr. And total soluble solid, total phenolics, crude saponin, reducing sugar, browning color intensity and electron donating ability at the given conditions(20 mL/g, $100^{\circ}C$, 3 hr) within the range of optimum conditions were 65.75%, 1.30 mg/g, 6.33%, 5.93%, 0.11 and 10.52%, respectively.

Effect of Astragali Radix and Opuntia humifusa on Quality of Red Ginseng Drink (황기 및 천년초 첨가가 홍삼음료의 품질에 미치는 영향)

  • You, SangGuan;Kim, Sung-Won;Jung, Kyung-Hwan;Moon, Sung-Kwon;Yu, Kwang-Won;Choi, Won-Seok
    • Food Engineering Progress
    • /
    • v.14 no.4
    • /
    • pp.299-306
    • /
    • 2010
  • This study was performed to develop new functional red ginseng drinks with Astragali Radix and Opuntia humifusa. Optimum extraction conditions such as solvent property and temperature for Astragali Radix were determined by distilled water vs. ethanol (95%) ratio (0:100, 25:75, 50:50, 75:25) and 60 vs. $80^{\circ}C$. Water-soluble extracts at $80^{\circ}C$ showed higher antioxidant activities than fat-soluble extracts at $60^{\circ}C$. Viscosities of 1-2% (w/v) of Opuntia humifusa solution were similar to that of the 0.1% guar gum solution. Addtion of Astragali Radix (3% and 5%, w/v) and Opuntia humifusa (1.2%, w/v), especially, had effect on the changes of pH of the red ginseng solution(5%, w/v) during storage for 7 days. A significant difference during the storage was shown in total plate counts by addition of Opuntia humifusa (1.2%, w/v) and microorganisms were reduced by six log cycles. Significant antiproliferation effects of red ginseng (5%, w/v) solution with Astragali Radix (3% & 5%, w/v) and Opuntia humifusa (1.2%, w/v) on Colon26m-3.1 carcinoma (colorectal carcinoma) cell and U87-MG neuronale glioblastoma (brain carcinoma) cell were not observed.

Leaching Behavior of Vanadium and Possibility of Recovery of Valuable Metals from VTM Concentrate by Sulfuric Acid Leaching (바나듐함유 티탄철석 정광으로부터 황산 침출법에 의한 바나듐의 침출거동 및 유가금속의 회수가능성)

  • Joo, Sung-Ho;Shin, Dong Ju;Lee, Dongseok;Park, Jin-Tae;Jeon, Hoseok;Shin, Shun Myung
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.65-77
    • /
    • 2022
  • A study was conducted in Korea on the leaching behavior and possibility of recovery of vanadium and other valuable metals from domestic vanadium titanomagnetite (VTM) by direct acid leaching. In this study, a VTM concentrate containing 0.8% V2O5 was used, and the ratio of magnetite to ilmenite was calculated as 1.9:1 by using the HSC program. The leaching behavior of vanadium from the VTM was similar to that of iron, and it was affected by the concentration of sulfuric acid and temperature. Further, titanium could be leached in the form of TiOSO4 at a temperature higher than 75℃. To improve the leaching efficiency of V, Fe, and Ti in VTM, reductive sulfuric acid and oxidative sulfuric acid leaching were performed. When Na2SO3 was used as a reducing agent, the leaching rate of vanadium was 80% of that in that case of leaching by sulfuric acid. Similarly, the leaching rate of titanium increased from 20% to 50%. When Na2S2O8 was used as an oxidation agent, most of the vanadium was leached, and the main residue found by XRD analysis was ilmenite. In studies on the possibility of recovering valuable metals, the selective extraction of metals is hardly achieved by solvent extraction from oxidation leaching solutions; however, in this study, Cyanex 923, a solvation extractant from reductive leaching solutions, could selectively extract Ti.