• 제목/요약/키워드: solution structure

검색결과 4,414건 처리시간 0.035초

Simulating the performance of the reinforced concrete beam using artificial intelligence

  • Yong Cao;Ruizhe Qiu;Wei Qi
    • Advances in concrete construction
    • /
    • 제15권4호
    • /
    • pp.269-286
    • /
    • 2023
  • In the present study, we aim to utilize the numerical solution frequency results of functionally graded beam under thermal and dynamic loadings to train and test an artificial neural network. In this regard, shear deformable functionally-graded beam structure is considered for obtaining the natural frequency in different conditions of boundary and material grading indices. In this regard, both analytical and numerical solutions based on Navier's approach and differential quadrature method are presented to obtain effects of different parameters on the natural frequency of the structure. Further, the numerical results are utilized to train an artificial neural network (ANN) using AdaGrad optimization algorithm. Finally, the results of the ANN and other solution procedure are presented and comprehensive parametric study is presented to observe effects of geometrical, material and boundary conditions of the free oscillation frequency of the functionally graded beam structure.

Multilayered inhomogeneous beam under prescribed angle of twist and displacements: A delamination analysis

  • Victor I. Rizov
    • Coupled systems mechanics
    • /
    • 제13권2호
    • /
    • pp.153-170
    • /
    • 2024
  • The problem considered in this theoretical paper is the delamination of a multilayered inhomogeneous beam structure that has viscoelastic behaviour under angle of twist, horizontal and vertical displacements which vary smoothly with time according to prescribed laws. The cross-section of the beam is a rectangle. The layers are made of different materials which are smoothly inhomogeneous along the length of the beam. The beam under consideration represents statically undetermined structure since it is clamped in its two ends. The problem of the strain energy release rate is solved. For this purpose, the strain energy stored in the beam structure is analyzed. In order to verify the solution obtained, the strain energy release rate is found also analyzing the time-dependent compliances of the beam under prescribed angle of twist and displacements. A parametric investigation is carried-out by applying the solution obtained. Special attention is paid to the effect of the parameters which control the variation of the angle of twist and the displacements with time on the strain energy release rate.

A facile one-pot solution-phase route to synthesizing anovel composite hierarchical hollow structure: W18O49/WO2 Hollow Nanourchins

  • 전성호;용기중
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.33.1-33.1
    • /
    • 2009
  • To date, nanostructured tungsten oxides with a variety of stoichiometries, such as WO3, WO2.9, W18O49, and WO2, have been prepared, because they are promising candidates for applications such as gas sensors, photocatalysts, electrochromic devices, and field emission devices. Among them, W18O49 and WO2 have been widely studied due to their outstanding chemical sensing, catalytic, and electron emissive properties. Here we report, for the first time, a one-pot solution-phase route to synthesizing a novel composite hierarchical hollow structure without adding catalysts, surfactants, or templates. The products, consisting of a WO2 hollow core sphere surrounded by a W18O49 nanorod shell (yielding a sea urchin-like structure), were generated as discrete structures via Ostwald ripening. To our knowledge, this type of composite hierarchical core/shell structure has not been reported previously. The morphological evolution and the detailed growth mechanism were carefully studied. We also demonstrate that the size of the hollow urchins is readily tunable by controlling the reactant concentrations.Interestingly, although bulk tungsten oxides are weakly paramagnetic or diamagnetic, the as-prepared products show unusual ferromagnetic behavior atroom temperature. The urchin structures also show a very high Brunauer-Emmet-Teller (BET) surface area, suggesting that they may potentially be applied to chemical sensor or effective catalyst technologies.

  • PDF

Robust finite element model updating of a large-scale benchmark building structure

  • Matta, E.;De Stefano, A.
    • Structural Engineering and Mechanics
    • /
    • 제43권3호
    • /
    • pp.371-394
    • /
    • 2012
  • Accurate finite element (FE) models are needed in many applications of Civil Engineering such as health monitoring, damage detection, structural control, structural evaluation and assessment. Model accuracy depends on both the model structure (the form of the equations) and the model parameters (the coefficients of the equations), and can be generally improved through that process of experimental reconciliation known as model updating. However, modelling errors, including (i) errors in the model structure and (ii) errors in parameters excluded from adjustment, may bias the solution, leading to an updated model which replicates measurements but lacks physical meaning. In this paper, an application of ambient-vibration-based model updating to a large-scale benchmark prototype of a building structure is reported in which both types of error are met. The error in the model structure, originating from unmodelled secondary structural elements unexpectedly working as resonant appendages, is faced through a reduction of the experimental modal model. The error in the model parameters, due to the inevitable constraints imposed on parameters to avoid ill-conditioning and under-determinacy, is faced through a multi-model parameterization approach consisting in the generation and solution of a multitude of models, each characterized by a different set of updating parameters. Results show that modelling errors may significantly impair updating even in the case of seemingly simple systems and that multi-model reasoning, supported by physical insight, may effectively improve the accuracy and robustness of calibration.

Use of Molecular Replacement to Determine the Phases of Crystal Structure of Taq DNA Polymerase

  • Kim, Young-Soo;Suh, Se-Won
    • BMB Reports
    • /
    • 제29권1호
    • /
    • pp.38-44
    • /
    • 1996
  • Taq DNA polymerase from Thermus aquaticus has been shown to be very useful in the polymerase chain reaction method, which is being used for amplifying DNA. Not only does Taq DNA polymerase have high commercial value commercial value for the polymerase chain reaction application, but it is also important in studying DNA replication, because it is apparently an homologue to E. coli DNA polymerase I, which has long been used for DNA replication study (Lawyer et ai., 1993). The crystal structure determination of Taq DNA polymerase was initiated. An X-ray diffraction pattern breaks down a crystal structure into discrete sine waves in a Fourier series. The original shape of a crystal object in terms of electron density may be represented as the sum of those sine waves with varying amplitudes and phases in three dimensions. The molecular replacement method was initially employed to provide phase information for the structure of Taq DNA polymerase. The rotation search using the program MERLOT resulted in a solution peak with 5.4 r.m.s. PC-refinement of the X-PLOR program verified the result and also optimized the orientation angles. Next, the translation search using the X-PLOR program resulted in a unique solution peak with 7.35 r.m.s. In addition, the translation search indicated $P3_121$ to be the true space group out of two possible ones. The phase information from the molecular replacement was useful in the MIR phasing experiment.

  • PDF

6DOF Simulation of a Floating Structure Model Using a Single Video

  • Trieu, Hang Thi;Han, Dongyeob
    • 한국측량학회지
    • /
    • 제32권6호
    • /
    • pp.563-570
    • /
    • 2014
  • This paper purposes on stimulating the dynamic behavior of a floating structure model with the image processing and the close-range photogrammetry, instead of the contact sensors. Previously, the movement of structures was presented by the exterior orientation estimation from a single camera following the space resection. The inverse resection yields to 6 orientation parameters of the floating structure, with respect to the camera coordinates system. The single camera solution of interest in applications is characterized by the restriction in terms of costs, unfavorable observation conditions, or synchronization demands when using multiple cameras. This paper discusses the theoretical determinations of camera exterior orientation by using the least squares adjustment, applied of the values from the DLT (Direct Linear Transformation) and the photogrammetric resection. This proposed method is applied to monitor motions of a floating model. The results of 6DOF (Six Degrees of Freedom) from the inverse resection were signified that applying appropriate initial values from DLT in the least square adjustment is effective in obtaining precise exterior orientation parameters. Therefore, the proposed method can be concluded as an efficient solution to simulate movements of the floating structure.

Compound damping cable system for vibration control of high-rise structures

  • Yu, Jianda;Feng, Zhouquan;Zhang, Xiangqi;Sun, Hongxin;Peng, Jian
    • Smart Structures and Systems
    • /
    • 제29권4호
    • /
    • pp.641-652
    • /
    • 2022
  • High-rise structures prone to large vibrations under the action of strong winds, resulting in fatigue damage of the structural components and the foundation. A novel compound damping cable system (CDCS) is proposed to suppress the excessive vibrations. CDCS uses tailored double cable system with increased tensile stiffness as the connecting device, and makes use of the relative motion between the high-rise structure and the ground to drive the damper to move back-and-forth, dissipating the vibration mechanical energy of the high-rise structure so as to decaying the excessive vibration. Firstly, a third-order differential equation for the free vibration of high-rise structure with CDCS is established, and its closed form solution is obtained by the root formulas of cubic equation (Shengjin's formulas). Secondly, the analytical solution is validated by a laboratory model experiment. Thirdly, parametric analysis is conducted to investigate how the parameters affect the vibration control performance. Finally, the dynamic responses of the high-rise structure with CDCS under harmonic and stochastic excitations are calculated and its vibration mitigation performance is further evaluated. The results show that the CDCS can provide a large equivalent additional damping ratio for the vibrating structures, thus suppressing the excessive vibration effectively. It is anticipated that the CDCS can be used as a good alternative energy dissipation system for vibration control of high-rise structures.

Ti-6Al-4V재의 전기화학적부식 거동에 미치는 시효열처리의 영향 (The Effect of Age Heat-treatment to the Electro-Chemical Corrosion Behavior on Ti-6Al-4V)

  • 백신영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권6호
    • /
    • pp.70-77
    • /
    • 2000
  • In this paper, the effect of solution and age heat treatment to the corrosion behavior for the Ti-6Al-4V alloy were studied by cyclic polarization methods. Ti-6Al-4V was solution heat treated at $1,066^{\circ}C$ and $966^{\circ}C$ for 5 hours, and followed by age heat treated at $650^{\circ}C$, $600^{\circ}C$ and $550^{\circ}C$ with 1, 2, 4, 8 and 16 hours under vacuum environment. Test solution was 3.5% NaCl with temperature $25^{\circ}C$. The obtained results were as follows: 1. Base metal was exhibited higher electrical charge than that of solution and aged material. With decrease of solution-treatment temperature from 1066 to $966^{\circ}C$, the electrical charge was increased due to softening of micro structure. 2. The corrosion resistance of specimen that solution treated at $966^{\circ}C$ for 5 hours and age heat treated at 650, 660 and $550^{\circ}C$ were increased with increase of aging time to 4, 8 and 16 hours respectively, and then decreased. 3. In case of 316L stainless steel, measured charge and corrosion potential was 0.0627 coulomb and -614 mV respectively. Corrosion resistance of Ti-6Al-4V was higher than that of 316L.

  • PDF

폴리에틸렌 내에서 워터트리가 확산하는데 염용액이 미치는 영향 (An Effect of the Salt Solution on the Water Tree Propagation in Polyethylene)

  • Koo, Ja-Yoon
    • 대한전기학회논문지
    • /
    • 제34권11호
    • /
    • pp.436-439
    • /
    • 1985
  • An effect of the salt solution on the Water Tree Propagation was shown systematically from the actions of the salt concentration in deionized water. It may be able to suggest that the tree propagation is possibly to be connected with an intervention of the electrochemical or chemical actions of the salt solution on water tree propagation, which may likely depend on the growth level of the trees. We have pointed out that it is necessary to study the structure of water tree under the electrical stress.

  • PDF

Sr 개량처리된 사형주조 Al-7Si-0.35Mg 합금의 열처리에 따른 공정 Si상 변화거동 및 특성평가 (Behavior of Eutectic Si and Mechanical Properties of Sr Modified Al-7Si-0.35Mg alloy with Solid Solution Treatment for Sand Casting)

  • 김명균;황석민
    • 한국주조공학회지
    • /
    • 제38권1호
    • /
    • pp.1-8
    • /
    • 2018
  • In this study, we focused on the correlation between the solidification structure, heat treatment and mechanical properties of the A356 alloy according to the conditions of Sr modification. The microstructural evolution of the eutectic Si and ${\alpha}-Al$ phase in the A356 alloy castings depending on the amount of Sr were investigated during solid solution heat treatment using an optical microscope, a scanning electron microscope and an image analyzer. In addition, tensile tests on the heat treated materials examined the relationship between the microstructure and the fracture surface. The as-cast A356 alloys under 40 ppm Sr showed an undermodified microstructure, but that of the added 60-80 ppm Sr had well modified structure of fine fibrous silicon. After solid solution treatment, the microstructure of the undermodified A356 alloy exhibited a partially spheroidized morphology, but the remainder showed the fragmentation of fibrous shaped silicon. The spheroidization of the eutectic silicon in the modified A356 alloys was completed during heat treatment, which was very effective in increasing the elongation. This is supported by the fracture surface in the tensile test.