• Title/Summary/Keyword: solution of multivariate equation

Search Result 4, Processing Time 0.02 seconds

Efficient Hausdorff Distance Computation for Planar Curves (평면곡선에 대한 Hausdorff 거리 계산의 가속화 기법에 대한 연구)

  • Kim, Yong-Joon;Oh, Young-Taek;Kim, Myung-Soo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.2
    • /
    • pp.115-123
    • /
    • 2010
  • We present an efficient algorithm for computing the Hausdorff distance between two planar curves. The algorithm is based on an efficient trimming technique that eliminates the curve domains that make no contribution to the final Hausdorff distance. The input curves are first approximated with biarcs within a given error bound in a pre-processing step. Using the biarc approximation, the distance map of an input curve is then approximated and stored into the graphics hardware depth-buffer by rendering the distance maps (represented as circular cones) of the biarcs. We repeat the same procedure for the other input curve. By sampling points on each input curve and reading the distance from the other curve (stored in the hardware depth-buffer), we can easily estimate a lower bound of the Hausdorff distance. Based on the lower bound, the algorithm eliminates redundant curve segments where the exact Hausdorff distance can never be obtained. Finally, we employ a multivariate equation solver to compute the Hausdorff distance efficiently using the remaining curve segments only.

On Modification and Application of the Artificial Bee Colony Algorithm

  • Ye, Zhanxiang;Zhu, Min;Wang, Jin
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.448-454
    • /
    • 2018
  • Artificial bee colony (ABC) algorithm has attracted significant interests recently for solving the multivariate optimization problem. However, it still faces insufficiency of slow convergence speed and poor local search ability. Therefore, in this paper, a modified ABC algorithm with bees' number reallocation and new search equation is proposed to tackle this drawback. In particular, to enhance solution accuracy, more bees in the population are assigned to execute local searches around food sources. Moreover, elite vectors are adopted to guide the bees, with which the algorithm could converge to the potential global optimal position rapidly. A series of classical benchmark functions for frequency-modulated sound waves are adopted to validate the performance of the modified ABC algorithm. Experimental results are provided to show the significant performance improvement of our proposed algorithm over the traditional version.

Solution of randomly excited stochastic differential equations with stochastic operator using spectral stochastic finite element method (SSFEM)

  • Hussein, A.;El-Tawil, M.;El-Tahan, W.;Mahmoud, A.A.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.129-152
    • /
    • 2008
  • This paper considers the solution of the stochastic differential equations (SDEs) with random operator and/or random excitation using the spectral SFEM. The random system parameters (involved in the operator) and the random excitations are modeled as second order stochastic processes defined only by their means and covariance functions. All random fields dealt with in this paper are continuous and do not have known explicit forms dependent on the spatial dimension. This fact makes the usage of the finite element (FE) analysis be difficult. Relying on the spectral properties of the covariance function, the Karhunen-Loeve expansion is used to represent these processes to overcome this difficulty. Then, a spectral approximation for the stochastic response (solution) of the SDE is obtained based on the implementation of the concept of generalized inverse defined by the Neumann expansion. This leads to an explicit expression for the solution process as a multivariate polynomial functional of a set of uncorrelated random variables that enables us to compute the statistical moments of the solution vector. To check the validity of this method, two applications are introduced which are, randomly loaded simply supported reinforced concrete beam and reinforced concrete cantilever beam with random bending rigidity. Finally, a more general application, randomly loaded simply supported reinforced concrete beam with random bending rigidity, is presented to illustrate the method.

Stereo Vision based on Planar Algebraic Curves (평면대수곡선을 기반으로 한 스테레오 비젼)

  • Ahn, Min-Ho;Lee, Chung-Nim
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.1
    • /
    • pp.50-61
    • /
    • 2000
  • Recently the stereo vision based on conics has received much attention by many authors. Conics have many features such as their matrix expression, efficient correspondence checking, abundance of conical shapes in real world. Extensions to higher algebraic curves met with limited success. Although irreducible algebraic curves are rather rare in the real world, lines and conics are abundant whose products provide good examples of higher algebraic curves. We consider plane algebraic curves of an arbitrary degree $n{\geq}2$ with a fully calibrated stereo system. We present closed form solutions to both correspondence and reconstruction problems. Let $f_1,\;f_2,\;{\pi}$ be image curves and plane and $VC_P(g)$ the cone with generator (plane) curve g and vertex P. Then the relation $VC_{O1}(f_1)\;=\;VC_{O1}(VC_{O2}(f_2)\;∩\;{\pi})$ gives polynomial equations in the coefficient $d_1,\;d_2,\;d_3$ of the plane ${\pi}$. After some manipulations, we get an extremely simple polynomial equation in a single variable whose unique real positive root plays the key role. It is then followed by evaluating $O(n^2)$ polynomials of a single variable at the root. It is in contrast to the past works which usually involve a simultaneous system of multivariate polynomial equations. We checked our algorithm using synthetic as well as real world images.

  • PDF