• Title/Summary/Keyword: solution accuracy

Search Result 1,824, Processing Time 0.031 seconds

CNN based data anomaly detection using multi-channel imagery for structural health monitoring

  • Shajihan, Shaik Althaf V.;Wang, Shuo;Zhai, Guanghao;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.181-193
    • /
    • 2022
  • Data-driven structural health monitoring (SHM) of civil infrastructure can be used to continuously assess the state of a structure, allowing preemptive safety measures to be carried out. Long-term monitoring of large-scale civil infrastructure often involves data-collection using a network of numerous sensors of various types. Malfunctioning sensors in the network are common, which can disrupt the condition assessment and even lead to false-negative indications of damage. The overwhelming size of the data collected renders manual approaches to ensure data quality intractable. The task of detecting and classifying an anomaly in the raw data is non-trivial. We propose an approach to automate this task, improving upon the previously developed technique of image-based pre-processing on one-dimensional (1D) data by enriching the features of the neural network input data with multiple channels. In particular, feature engineering is employed to convert the measured time histories into a 3-channel image comprised of (i) the time history, (ii) the spectrogram, and (iii) the probability density function representation of the signal. To demonstrate this approach, a CNN model is designed and trained on a dataset consisting of acceleration records of sensors installed on a long-span bridge, with the goal of fault detection and classification. The effect of imbalance in anomaly patterns observed is studied to better account for unseen test cases. The proposed framework achieves high overall accuracy and recall even when tested on an unseen dataset that is much larger than the samples used for training, offering a viable solution for implementation on full-scale structures where limited labeled-training data is available.

Data-Based Model Approach to Predict Internal Air Temperature in a Mechanically-Ventilated Broiler House (데이터 기반 모델에 의한 강제환기식 육계사 내 기온 변화 예측)

  • Choi, Lak-yeong;Chae, Yeonghyun;Lee, Se-yeon;Park, Jinseon;Hong, Se-woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.5
    • /
    • pp.27-39
    • /
    • 2022
  • The smart farm is recognized as a solution for future farmers having positive effects on the sustainability of the poultry industry. Intelligent microclimate control can be a key technology for broiler production which is extremely vulnerable to abnormal indoor air temperatures. Furthermore, better control of indoor microclimate can be achieved by accurate prediction of indoor air temperature. This study developed predictive models for internal air temperature in a mechanically-ventilated broiler house based on the data measured during three rearing periods, which were different in seasonal climate and ventilation operation. Three machine learning models and a mechanistic model based on thermal energy balance were used for the prediction. The results indicated that the all models gave good predictions for 1-minute future air temperature showing the coefficient of determination greater than 0.99 and the root-mean-square-error smaller than 0.306℃. However, for 1-hour future air temperature, only the mechanistic model showed good accuracy with the coefficient of determination of 0.934 and the root-mean-square-error of 0.841℃. Since the mechanistic model was based on the mathematical descriptions of the heat transfer processes that occurred in the broiler house, it showed better prediction performances compared to the black-box machine learning models. Therefore, it was proven to be useful for intelligent microclimate control which would be developed in future studies.

Tunnel wall convergence prediction using optimized LSTM deep neural network

  • Arsalan, Mahmoodzadeh;Mohammadreza, Taghizadeh;Adil Hussein, Mohammed;Hawkar Hashim, Ibrahim;Hanan, Samadi;Mokhtar, Mohammadi;Shima, Rashidi
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.545-556
    • /
    • 2022
  • Evaluation and optimization of tunnel wall convergence (TWC) plays a vital role in preventing potential problems during tunnel construction and utilization stage. When convergence occurs at a high rate, it can lead to significant problems such as reducing the advance rate and safety, which in turn increases operating costs. In order to design an effective solution, it is important to accurately predict the degree of TWC; this can reduce the level of concern and have a positive effect on the design. With the development of soft computing methods, the use of deep learning algorithms and neural networks in tunnel construction has expanded in recent years. The current study aims to employ the long-short-term memory (LSTM) deep neural network predictor model to predict the TWC, based on 550 data points of observed parameters developed by collecting required data from different tunnelling projects. Among the data collected during the pre-construction and construction phases of the project, 80% is randomly used to train the model and the rest is used to test the model. Several loss functions including root mean square error (RMSE) and coefficient of determination (R2) were used to assess the performance and precision of the applied method. The results of the proposed models indicate an acceptable and reliable accuracy. In fact, the results show that the predicted values are in good agreement with the observed actual data. The proposed model can be considered for use in similar ground and tunneling conditions. It is important to note that this work has the potential to reduce the tunneling uncertainties significantly and make deep learning a valuable tool for planning tunnels.

Design Optimization for 3D Woven Materials Based on Regression Analysis (회귀 분석에 기반한 3차원 엮임 재료의 최적설계)

  • Byungmo, Kim;Kichan, Sim;Seung-Hyun, Ha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.6
    • /
    • pp.351-356
    • /
    • 2022
  • In this paper, we present the regression analysis and design optimization for improving the permeability of 3D woven materials based on numerical analysis data. First, the parametric analysis model is generated with variables that define the gap sizes between each directional wire of the woven material. Then, material properties such as bulk modulus, thermal conductivity coefficient, and permeability are calculated using numerical analysis, and these material data are used in the polynomial-based regression analysis. The Pareto optimal solution is obtained between bulk modulus and permeability by using multi-objective optimization and shows their trade-off relation. In addition, gradient-based design optimization is applied to maximize the fluid permeability for 3D woven materials, and the optimal designs are obtained according to the various minimum bulk modulus constraints. Finally, the optimal solutions from regression equations are verified to demonstrate the accuracy of the proposed method.

Estimation of Urban Traffic State Using Black Box Camera (차량 블랙박스 카메라를 이용한 도시부 교통상태 추정)

  • Haechan Cho;Yeohwan Yoon;Hwasoo Yeo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.133-146
    • /
    • 2023
  • Traffic states in urban areas are essential to implement effective traffic operation and traffic control. However, installing traffic sensors on numerous road sections is extremely expensive. Accordingly, estimating the traffic state using a vehicle-mounted camera, which shows a high penetration rate, is a more effective solution. However, the previously proposed methodology using object tracking or optical flow has a high computational cost and requires consecutive frames to obtain traffic states. Accordingly, we propose a method to detect vehicles and lanes by object detection networks and set the region between lanes as a region of interest to estimate the traffic density of the corresponding area. The proposed method only uses less computationally expensive object detection models and can estimate traffic states from sampled frames rather than consecutive frames. In addition, the traffic density estimation accuracy was over 90% on the black box videos collected from two buses having different characteristics.

HS-PSO Hybrid Optimization Algorithm for HS Performance Improvement (HS 성능 향상을 위한 HS-PSO 하이브리드 최적화 알고리즘)

  • Tae-Bong Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.4
    • /
    • pp.203-209
    • /
    • 2023
  • Harmony search(HS) does not use the evaluation of individual harmony when referring to HM when constructing a new harmony, but particle swarm optimization(PSO), on the contrary, uses the evaluation value of individual particles and the evaluation value of the population to find a solution. However, in this study, we tried to improve the performance of the algorithm by finding and identifying similarities between HS and PSO and applying the particle improvement process of PSO to HS. To apply the PSO algorithm, the local best of individual particles and the global best of the swam are required. In this study, the process of HS improving the worst harmony in harmony memory(HM) was viewed as a process very similar to that of PSO. Therefore, the worst harmony of HM was regarded as the local best of a particle, and the best harmony was regarded as the global best of swam. In this way, the performance of the HS was improved by introducing the particle improvement process of the PSO into the HS harmony improvement process. The results of this study were confirmed by comparing examples of optimization values for various functions. As a result, it was found that the suggested HS-PSO was much better than the existing HS in terms of accuracy and consistency.

A Study on Ground and Object Separation Techniques Utilizing 3D Point Cloud Data in Urban Air Mobility (UAM) Environments (UAM 환경에서의 3D Point Cloud Data 지면/객체 분리 기법 연구)

  • Bon-soo Koo;In-ho choi;Jae-rim Yu
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.481-487
    • /
    • 2023
  • Recently, interest in UAM (Urban Air Mobility) has surged as a critical solution to urban traffic congestion and air pollution issues. However, efficient UAM operation requires accurate 3D Point Cloud data processing, particularly in separating the ground and objects. This paper proposes and validates a method for effectively separating ground and objects in a UAM environment, taking into account its dynamic and complex characteristics. Our approach combines attitude information from MEMS sensors with ground plane estimation using RANSAC, allowing for ground/object separation that isless affected by GPS errors. Simulation results demonstrate that this method effectively operates in UAM settings, marking a significant step toward enhancing safety and efficiency in urban air mobility. Future research will focus on improving the accuracy of this algorithm, evaluating its performance in various UAM scenarios, and proceeding with actual drone tests.

Personalized Size Recommender System for Online Apparel Shopping: A Collaborative Filtering Approach

  • Dongwon Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.39-48
    • /
    • 2023
  • This study was conducted to provide a solution to the problem of sizing errors occurring in online purchases due to discrepancies and non-standardization in clothing sizes. This paper discusses an implementation approach for a machine learning-based recommender system capable of providing personalized sizes to online consumers. We trained multiple validated collaborative filtering algorithms including Non-Negative Matrix Factorization (NMF), Singular Value Decomposition (SVD), k-Nearest Neighbors (KNN), and Co-Clustering using purchasing data derived from online commerce and compared their performance. As a result of the study, we were able to confirm that the NMF algorithm showed superior performance compared to other algorithms. Despite the characteristic of purchase data that includes multiple buyers using the same account, the proposed model demonstrated sufficient accuracy. The findings of this study are expected to contribute to reducing the return rate due to sizing errors and improving the customer experience on e-commerce platforms.

AMG-CG method for numerical analysis of high-rise structures on heterogeneous platforms with GPUs

  • Li, Zuohua;Shan, Qingfei;Ning, Jiafei;Li, Yu;Guo, Kaisheng;Teng, Jun
    • Computers and Concrete
    • /
    • v.29 no.2
    • /
    • pp.93-105
    • /
    • 2022
  • The degrees of freedom (DOFs) of high-rise structures increase rapidly due to the need for refined analysis, which poses a challenge toward a computationally efficient method for numerical analysis of high-rise structures using the finite element method (FEM). This paper presented an efficient iterative method, an algebraic multigrid (AMG) with a Jacobi overrelaxation smoother preconditioned conjugate gradient method (AMG-CG) used for solving large-scale structural system equations running on heterogeneous platforms with parallel accelerator graphics processing units (GPUs) enabled. Furthermore, an AMG-CG FEM application framework was established for the numerical analysis of high-rise structures. In the proposed method, the coarsening method, the optimal relaxation coefficient of the JOR smoother, the smoothing times, and the solution method for the coarsest grid of an AMG preconditioner were investigated via several numerical benchmarks of high-rise structures. The accuracy and the efficiency of the proposed FEM application framework were compared using the mature software Abaqus, and there were speedups of up to 18.4x when using an NVIDIA K40C GPU hosted in a workstation. The results demonstrated that the proposed method could improve the computational efficiency of solving structural system equations, and the AMG-CG FEM application framework was inherently suitable for numerical analysis of high-rise structures.

Development of AI Education Program for Prediction System Based on Linear Regression for Elementary School Students (선형회귀모델 기반의 초등학생용 인공지능 예측 시스템 교육 프로그램의 개발)

  • Lee, Soo Jeong;Moon, Gyo Sik
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.51-57
    • /
    • 2021
  • Quite a few elementary school teachers began to utilize AI technology in order to provide students with customized, intelligent information services in recent years. However, learning principles of AI may be as important as utilizing AI in everyday life because understanding principles of AI can empower them to buildup adaptability to changes in highly technological world. In the paper, 'Linear Regression Algorithm' is selected for teaching AI-based prediction system to solve real world problems suitable for elementary students. A simulation program written in Scratch was developed so that students can find a solution of linear regression model using the program. The paper shows that students have learned analyzing data as well as comparing the accuracy of the prediction model. Also, they have shown the ability to solve real world problems by finding suitable prediction models.

  • PDF