• Title/Summary/Keyword: solutes

Search Result 241, Processing Time 0.022 seconds

The Behavior of Solutes in Nonaqueous Solutions (Ⅱ). Relative Viscosities and Osmotic Coefficients of Urea, 1,3-Dimethylurea, Acetamide, and Propionamide (물아닌 용액에서의 용질의 행동에 관한 연구 (제2보). 요소, 1,3-디메틸요소, 아세트아미드와 프로피온아미드의 상대점도와 삼투계수)

  • Si-Joong Kim;Young-Kook Shin
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.209-217
    • /
    • 1980
  • The relative viscosities and osmotic coefficients of solutions of urea, 1,3-dimethyl-urea(DMU), acetamide(AA), and propionamide (PA) in dimethylsulfoxide(DMSO), water, methanol, and in ethanol have been measured at 25 and $45^{\circ}$C by viscometry and osmometry. Viscosity increment in nonaqueous solutions decreased with increasing of the partial molal volumes of the solutes, but in aqueous solution the result was inversed. Viscosity increment of aqueous solution was smaller than that of aqueous DMU solution, but that of nonaqueous urea solution was larger than that of DMU. Amides, however, showed similar viscosity increment in any solvent.Osmotic coefficients of aqueous solution of urea were larger than those of DMU. In the nonaqueous solutions urea exhibited larger deviation from Raoult's law than DMU. The results indicated that urea molecules break water-structure in water, self-associate in DMSO, and showed larger solute-solvent interaction in alcohols than DMU. It can be also confirmed that amides break alcohol structure to a greater extent than any other solutes.

  • PDF

Seasonal Change Characteristics of Stream Water Quality in Planted Coniferous Forest (침엽수 인공림 계류수 수질의 계절변화 특성)

  • Kim, Jaehoon;Choi, Hyung Tae;Yoo, Jae Yun
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.6
    • /
    • pp.929-935
    • /
    • 2015
  • This study was carried out to investigate pH, EC, solutes concentration and ANC characteristics in coniferous forest experiment watershed in Gyeonggi-do, Korea from 2005 to 2007. The average pH value was 6.87 and low at spring season due to deposition in crown. The average EC was $58.4{\mu}S/cm$ and was high at spring season due to high concentration of solutes. The cation and anion concentration was high at spring and fall season with low rainfall. When stream water quality was compared to different watershed, EC was relatively low due to high rainfall and $NO_3{^-}$ was high due to deposition and forest practice. pH and ANC was relatively constant at stream water

Infinite Dilution Activity Coefficients by Gab Chromatography for Variously Polarized Solute-Solvent Systems (극성이 상이한 용질-용매계에서 무한희석 활동도 계수의 가스크로마토그래피에 의한 측정)

  • Kim, Chol-Woo;Kim, Hee-Duk;Park, Jun-Ok;Nam, Se-Jong
    • Applied Chemistry for Engineering
    • /
    • v.4 no.3
    • /
    • pp.474-481
    • /
    • 1993
  • The infinite dilution activity coefficients(${\gamma}{\infty}$) of nonpolar and polar solutes have been determined in different solvents at temperature between 60 and $100^{\circ}C$ by using gas chromatography. The $ln{\gamma}{\infty}$ values of nonpolar solutes(alkanes, cyclohexane, benzene, toluene and $CCl_4$) were linearly increased as 1/T in the nonpolar solvent (n-octadecane) and the polar solvent(n-hexadecyl alcohol) systems and the $ln{\gamma}{\infty}$ values at the constant temperature were increased with the number of carbon atoms of solute molecule. For the polar solutes(alcohols, esters and ketones) and the weak polar solvent(di-2-ethyl adiphate and di-2-ethylhexyl sebacate) systems, the relations of $ln{\gamma}{\infty}$ vs. 1/T were found to be curved with increased slope, and the $ln{\gamma}{\infty}$ values at constant temperature were linearly diminished as increasing the number of carbon atoms of solute molecule. For the polar solutes(alcohols, esters and ketones) and the strong polar solvents(triphenyl phosphate and tricresyl phosphate)systems, the relations of $ln{\gamma}{\infty}$ vs. 1/T were found to be curved with increased slope but $ln{\gamma}{\infty}$ values at constant temperature were linearly increased as increasing the number of carbon atoms of solute molecule.

  • PDF

Waterproofing Mechanism of Hardened Cement Paste with Waterproofing Materials (구체방수제가 혼입된 시멘트 경화체의 방수 메카니즘)

  • Kang, Hyun Ju;Song, Myong Shin;Park, Jong Hun;Jeon, Se Hoon;Lee, Sung Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.25-30
    • /
    • 2013
  • The pore volume of hardened cement with waterproofing materials is lower compared to that of hardened cement without waterproofing materials. Thus, fewer gaps will appear by means of chemical reactions between $Ca^{2+}$ ions in hardened cement and water, solutes, and other ions. Due to the selective permeability, the osmotic pressure of hardened cement can change due to physical effects such as the reduction of the pore volume and the reduction in the number of pores, as well as by the electrochemical reaction between water, solutes, other ions and $Ca^{2+}$ ions in hardened cement. Of course, these factors do not have independent effects but instead a combined complex effect. Accordingly, we studied changes in the osmotic pressure due to the difference in the pore structure of hardened cement. A pore size smaller than 1 nm in hardened cement had only a slight effect on the osmotic pressure, whereas a pore size larger than 1 nm had a direct effect on the osmotic pressure.

Estimating Leaching of Nutrients and Pesticides in Agricultural Lands -A Perferential Flow Model- (농경지의 비료, 농약의 지하유실량 추정 -Preferential 흐름모형-)

  • 이남호;타모스틴후이스
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.62-73
    • /
    • 1997
  • The application of nutrients and pesticides to agricultural lands has been reported to contribute to groundwater contamination, which can be explained by preferential flow in lieu of convective-dispersive flow. An one-dimensional numerical model depicting preferential water and solute movement was modified to describe multi-layer flows. The model is based on a piecewise linear conductivity function. By combining conservation of mass and Darcy's law and using the method of characteristics a solution is obtained for water flow in which water moves at distinct velocities in different flow regions instead of an average velocity for the whole profile. The model allows transfer ofqr solutes between pore groups. The transfer is characterized by assuming mixing coefficients. The model was applied to undisturbed soil columns and an experiment site with structured sandy clay loam soil. Chloride, bromide, and 2, 4-D were used as tracers. Simulated solutes concentrations were in good agreement with the soil column data and field data in which preferential flow of solute is significant. The proposed model is capable of describing preferential solute transport under laboratory and field conditions.

  • PDF

Comparison study on membrane fouling by various sludge fractions with long solid retention time in membrane bioreactor

  • Sun, Darren Delai;Liu, Shushu
    • Membrane and Water Treatment
    • /
    • v.4 no.3
    • /
    • pp.175-189
    • /
    • 2013
  • A membrane bioreactor (MBR) with sludge retention time (SRT) of 300 days was maintained for over 2 years. Polypropylene microfiltration (MF) membrane with pore size of 0.2 ${\mu}m$ was used in the MBR system. The fouling behaviors of various sludge fractions from the MBR were studied and sub-divided resistances were analyzed. It was observed that $R_{cp}$ was a dominant resistance during the filtration of activated sludge, contributing 63.0% and 59.6% to the total resistance for MBR and sequential batch reactor (SBR) respectively. On the other hand, $R_c$ played the significant role during the filtration of supernatant and solutes, varying between 54.54% and 67.18%. Compared with $R_{cp}$ and $R_c$, $R_{if}$ was negligible, and $R_m$ values remained constant at $0.20{\times}10^{12}m^{-1}$. Furthermore, resistances of all sludge fractions increased linearly with rising mixed liquor suspended solids (MLSS) concentration and growing trans-membrane pressure (TMP), while the relationship was inversed between fraction resistances and cross flow velocity (CFV). Among all fractions of activated sludge, suspended solid was the main contributor to the total resistance. A compact cake layer was clearly observed according to the field emission scanning electro microscopy (FE-SEM) images.

\Transport Phenomena of Alkali Metal Chlorides theough Poly(2-Hydroxyethyl Methacrylate) Hydrogel Membrane (Poly(2-Hydroxyethyl Methacrylate) 수화겔 막에 대한 알카리 금속 염화물의 수송현상)

  • Seong, Yong-Gil;Lee, Chun-Gi;Jeon, Mu-Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.123-134
    • /
    • 1987
  • The transport phenomena of alkali metal chlorides through poly(2 hydroxyethyl methacrylate) hydrogel membrane have been studied using electrodialysis. The hydrogel membranes were prepared by the polymerization of 2-hydroxvethyl methacrylate in the presence of 45%(V/V) H2O and ethyleneglycodimethacrylate. The initiator used in the polymerization was azobismethylisobutyrate (AMIB) prepared from azobisiobtyronitrile (AIBN) using Mortimer method. The permeability of alkali metal chlorides such LiCl, NaCl and KCI at 50 voltage was obtained. The permeability of NaCl was also observed at 30, 40, 50, and 60 voltages respectively. The concentration of solutes permeated through the membrane was measurer by flame photometry. The experimental results have been discussed with the comparison of apparent solute molecular size, the self-diffusion coefficient of solutes, the transport number of cations in aqueous solution. These indic aloes that poly(2 hydroxyethyl methacrylate) hydrogel membrane shows a specific selectivity for sodium ion.

  • PDF

Study on the Paper Chromatography. Ⅰ. Capillary Ascending of Liguids (Paper Chromatography 에 關한 硏究 (第 1 報) 毛細管 上昇에 關하여 (基一))

  • Young Jae Hyun;Choi Qui Won
    • Journal of the Korean Chemical Society
    • /
    • v.3 no.1
    • /
    • pp.23-27
    • /
    • 1954
  • The relation between the height of ascending solvents and its velocity were studied with strips of Toyo No. 50 filter paper. The filter paper strip of 3cm width and cat 30 cm length is hooked down or fixed between two sheets of glass plates inside a cylinder containing the solvent, in which the lower end of the strip is dipped. As the solvents, acetone, hydrochloric acid, water or mixtures of these are used. For short time intervals, Ostwald's folmula $h = Kt^n$ was found to be most suitable to express the relation between the height of the solvent front, h, and time, t. For longer time intervals, results will be discussed in the next paper. The mean values of the constant m in the above formula for pure acetone and pure water were 0.44 and 0.485, respectively, and that of K were 0.05 and 2.4, respectively. The time interval whose the above formula applies, for each solvent was 2 hours for the former, and a half hour for the later, respectively. The movement of solutes, such as $Cu^{++}$ and $Fe^{++}$ showed that the Rf values of solutes become constant values after a long periods; e.g., ca. 6 hours with 10N-HCl-Acetone (1 : 9) solvent.

  • PDF

Nanofiltration of multi-ionic solutions: prediction of ions transport using the SEDE model

  • Cavaco Morao, A.I.;Szymczyk, A.;Fievet, P.;Brites Alves, A.M.
    • Membrane and Water Treatment
    • /
    • v.1 no.2
    • /
    • pp.139-158
    • /
    • 2010
  • This work focuses on the application of nanofiltration (NF) to the concentration of a pharmaceutical product, Clavulanate ($CA^-$), from clarified fermentation broths, which show a complex composition with six main identified ions ($K^+$, $Cl^-$, ${NH_4}^+$, $H_2{PO_4}^-$, ${SO_4}^{2-}$ and $CA^-$), glucose and glycerol. The solutes transport through the NF membrane pores was investigated using the SEDE (Steric, Electric and Dielectric Exclusion) model. This model was applied to predict the rejection rates of the initial feed solution and the final concentrated solution (10-fold concentrated solution). The best results were achieved with a single fitted parameter, ${\varepsilon}_p$ (the dielectric constant of the solution inside pores) and considering that the membrane selectivity is governed by steric, electric (Donnan) and Born dielectric exclusion mechanisms. While the predicted intrinsic rejections of solutions comprising up to six ions and uncharged solutes were in good agreement with the experimental values, the deviations were much larger for the 10-fold concentrated solution.