• Title/Summary/Keyword: solutes

Search Result 241, Processing Time 0.025 seconds

Concept and Application of Generalized Preferential Flow Model (GPFM) (Generalized Preferential Flow Model (GPFM)의 개념과 적용사례 연구)

  • Kim, Young-Jin;Steenhuis, Tammo;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.33-36
    • /
    • 2007
  • In recent years the convective-dispersive equation has been often discredited in predicting subsurface solute transport under field conditions due to presence of preferential flow paths. Kim et al. (2005) proposed a simple equation that can predict the breakthrough of solutes without excessive data requirements. In their Generalized Preferential Flow Model (GPFM), the soil is conceptually divided in a saturated "distribution layer" near the surface and a "conveyance zone" with preferential flow paths below. In this study, we test the model with previously published data, and compare it with a classical convective-dispersive model (CDM). With three parameters required-apparent water content of the distribution zone, and solute velocity and dispersion in the conveyance zone-GPFM was able to describe the breakthrough of solutes both through silty and sandy loam soils. Although both GPFM and CDM fitted the data well in visual, variables for GPFM were more realistic. The most sensitive parameter was the apparent water content, indicating that it is the determining factor to apply GPFM to various soil types, while Kim et al. (2005) reported that changing the velocity of GPFM reproduced solute transport when same soils were used. Overall, it seems that the GPFM has a great potential to predict solute leaching under field conditions with a wide range of generality.

A Study of the Retention Mechanism of the Monosubstituted Benzenes in Reversed-Phase Liquid Chromatography (Ⅰ). The Elution Behavior of the Monosubstituted Benzenes (역상 액체크로마토그래피에서 벤젠 일치환체들의 머무름 메카니즘에 관한 연구 (Ⅰ). 벤젠 일치환체들의 용리거동)

  • Dai Woon Lee;Yong Wook Choi;Hyun Joo Kim;Yong Soon Chung
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.55-63
    • /
    • 1987
  • The systematic investigation of the retention behaviors of 18 monosubstituted benzenes in reversed-phase liquid chromatography(RPLC) was studied in order to predict the separation possibility of their mixtures and study the contribution of substituent group to the retentions of solutes. The columns and mobile phases employed in this study were $\mu$ -Bondapak $C_{18}$, $\mu$-Bondapak phenyl columns and methanol/water, acetonitrile/water, and THF/water, respectively. The polar substituents such as phenol, aniline, acetophenone and benzonitrile have smaller capacity factor(k') values than benzene, while nonpolar ones such as alkylbenzenes and halobenzenes show larger k' value. The capacity factors of all solutes increased on both C18 bonded and phenyl bonded phases as the organic solvent content of three organic solvent-water mixtures decreased. The absolute differences in capacity factor(${\Delta}k$') between substituent and benzene were graphically shown for the prediction of the separation of the mixture and interpretation of the elution behavior of substituent. In addition, the selectivity of solvent system for the separation of the mixture was investigated in both two columns and three mobile phases.

  • PDF

Interpretation of Migration of Radionuclides in a Rock Fracture Using a Particle Tracking Method (입자추적법을 사용한 암반균열에서 핵종이동 해석)

  • Chung Kyun Park;Pil Soo Hahn;Douglas J. Drew
    • Nuclear Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.176-188
    • /
    • 1995
  • A particle tracking scheme was developed in order to model radionuclide transport through a tortuous flow Held in a rock fracture. The particle tacking method may be used effectively in a heterogeneous flow field such as rock fracture. The parallel plate representation of the single fracture fails to recognize the spatial heterogeneity in the fracture aperture and thus seems inadequate in describing fluid movement through a real fracture. The heterogeneous flow field une modeled by a variable aperture channel model after characterizing aperture distribution by a hydraulic test. To support the validation of radionuclide transport models, a radionuclide migration experiment was performed in a natural fracture of granite. $^3$$H_2O$ and $^{131}$ I are used as tracers. Simulated results were in agreement with experimental result and therefore support the validity of the transport model. Residence time distributions display multipeak curves caused by the fast arrival of solutes traveling along preferential fracture channels and by the much slower arrival of solutes following tortous routes through the fracture. Results from the modelling of the transport of nonsorbing tracer through the fracture show that diffusion into the interconnected pore space in the rock mass has a significant effect on retardation.

  • PDF

Effect of Substituted Groups on the Retention of Monosubstituted Phenols in Reversed-Phase Liquid Chromatography (역상 액체 크로마토그래피에서 페놀 일치환체들의 머무름에 미치는 치환기들의 영향)

  • Kim, Hun Ju;Lee, In Ho;Lee, Dae Un
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.8
    • /
    • pp.562-569
    • /
    • 1994
  • The retention data of twenty one monosubstituted phenols in the eluent systems containing 30∼70% of methanol or acetonitrile as organic modifiers, on $ C_{18}$ and Phenyl columns were collected to investigate the effect of the substituted groups on the retention of phenols. The capacity factors of the solutes except amino phenols are greater on $ C_{18}$ than on Phenyl column. And all the solutes have shown greater capacity factors in methanol-water than that in acetonitrile-water as a mobile phase. Generally the elution order between meta and para isomers of monosubstituted phenols in consistent (p < m) regardless of the polarity of the substituted group. But the elution order between ortho and meta isomers of phenol varies with regard to the polarity of the substituted group. The retention of the monosubstituted phenols has been influenced by the interaction between the solute and unreacted silanol of columns as well as the interaction between the solute and $ C_{18}$ or phenyl group of columns. And then, the effect of unreacted silanol on the retention of the monosubstituted phenols is greater on $ C_{18}$ than on Phenyl column. And the greater hydrogen bonding acceptor basicity(${\beta}$) of the substituted group is, the greater this effect is. The relationship between the retention of the monosubstituted phenols and their parameters such as van der Waals volume(VWV) and hydrogen bonding acceptor basicity(${\beta}$) has been investigated. The good linearity has been observed in the plot log k' vs. (1.01VWV/100-1.84${\beta}$). In consequence, the retention of the monosubstituted phenols on $ C_{18}$ and Phenyl columns can be easily predicted by the parameter (1.01VWV/100-1.84${\beta}$).

  • PDF

A Study on Elution Behavior of Polystyrene Copolymers in Gel Permeation Chromatography (겔 투과 크로마토그래피에서 폴리스티렌 혼성중합체들의 용리거동에 관한 연구)

  • Lee Dai Woon;Eum Chul Hun
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.1
    • /
    • pp.87-94
    • /
    • 1992
  • The elution behavior of polystyrenes(PS), polymethylmethacrylates (PMMA), polybutadienes(PB), PS-PMMA(SM) block copolymers and PS-PB star shaped copolymers on the cross-linked polystyrene gels was studied. An interpretation was proposed for the plots of log hydrodynamic volume versus retention volume of solutes in the mobile phases such as tetrahydrofuran, toluene, chloroform, methylene chloride and tetrahydrofuran-cyclohexane mixture. In order to predict the retention of solutes from their physical properties, multiple stepwise regression analysis was applied to obtain the correlation. The distribution coefficients($K_p$) of solute-gel interactions in GPC for homopolymers and PS copolymers were also obtained in terms of network-limited separation mechanism. In the cases of PS and PB, $K_p$ values approach unity, while $K_p$ values for PMMA decrease as MW increase in the good solvent, but in poor solvent, $K_p$ values increase as MW increase. $K_p$ values of PS copolymers are dependent on their MW and composition, therefore, morohology of SM block copolymer is predicted to be random phase. A single universal plot of log[η]M vs. $(V_r-V_o)/K_p$

  • PDF

Potassium Pentane-1,3,3,5-tetracarboxylate Draw Solute Synthesis and Application of Forward Osmosis Process (Potassium Pentane-1,3,3,5-tetracarboxylate 유도용질 합성 및 이를 이용한 정삼투 공정 응용)

  • Lee, Hye-Jin;Choi, Jin-Il;Kwon, Sei;Kim, In-Chul
    • Membrane Journal
    • /
    • v.29 no.2
    • /
    • pp.111-121
    • /
    • 2019
  • An organic citrate series draw solute was synthesized using diethyl malonate for forward osmosis. The structure of the final compound potassium pentane-1,3,3,5-tetracarboxylate was confirmed by $^1H-NMR$ and $^{13}C-NMR$ analysis. Osmotic pressure, solubility, water permeability and reverse salt flux were measured for the properties of the draw solute. Forward osmosis results showed that the draw solute exhibited higher water flux than other draw solutes of trisodium citrate and tripotassium citrate. Reverse salt flux of all the organic daw solutes was much lower than that of NaCl. The osmotic pressure of the synthesized draw solute was 25% lower than that of NaCl. The solubility of the draw solute was 317 g/ 100 g water, which is 8.8 times higher than that of NaCl. A commercialized nanofiltration membrane was used for the recovery of the draw solute. The draw solute could be effectively recovered at low pressure.

Cultivation of the Hyperthermophilic Archaeon Sulfolobus solfataricus in Low-Salt Media

  • Park, Chan-Beum;Lee, Sun-Bok
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.4 no.1
    • /
    • pp.21-25
    • /
    • 1999
  • Two low-salt complex media, bactopeptone and desalted yeast extract, were used for high density cultivation of the hyperthermophilic archaeon Sulfolobus solfataricus (DSM 1617). Bactopeptone, which has low mineral ion content among various complex media, was good for cell growth in batch cultures; the maximal cell density in bactopeptone was comparable to that in yeast extract. However, cell growth was rather poor when bactopeptone was added by the fed-batch procedure. Since several vitamins are deficient in abctopeptone, the effect of vitamins on cell growth was examined. Among the vitamins tested, pyridoxine was found to improve the growth rate of S. solfataricus. To reduce the growth inhibition caused by mineral ions, yeast extract was dialyzed against distilled water and then fed-batch cultures were carried out using a fed medium containing desalted yeast extract. Although the concentrations of mineral ions in yeast extract were significantly lowered by the dialysis whether low molecular weight solutes in yest extract are crucial for cell growth, we investigated the effect of trehalose, a most abundant compatible solute in yeast extract, on the growth pattern. Cell densities were increased and the length of the lag phase was markedly shortened by the presence of trehalose, indicating that trehalose plays an important role in the growth of S. solfataricus.

  • PDF

A Study on the Solidification and Purification of High Purity Aluminium and Silicon by Stirring Method (냉각체 회전법에 의한 고순도 알루미늄 및 규소의 응고 및 정련에 관한 연구)

  • Kim, Wook;Lee, Jong-Ki;Baik, Hong-Koo;Yoon, Woo-Young
    • Journal of Korea Foundry Society
    • /
    • v.11 no.4
    • /
    • pp.303-313
    • /
    • 1991
  • The Purification mechanism of high purity aluminum was studied through the variation of stirring speed and coolant flow rate in the stirring method. In the stirring method the degree of purification was changed as the following factors;the variation of diffusion boundary layer thickness the variation of growth rate and the solute concentration of the residual melt. The concentration of Fe and Si was decreased as the stirring speed and the radial distance increased. In a high stirring speed of 2000rpm with unidirectional stirring mode, the uniformity of solutes was obtained. On the other hand, the purification of Si was done by the combinations of stirring method, fractional melting and acid leaching. In the case of Si purification, the centrifugal force developed in the melt acted as the significant purification factor. It was possible to obtain the purified 3N grade Si crystal after the complete elimination of residual aluminum by fractional melting and acid leaching.

  • PDF

Desalination of geothermal water by membrane distillation

  • Gryta, M.;Palczynski, M.
    • Membrane and Water Treatment
    • /
    • v.2 no.3
    • /
    • pp.147-158
    • /
    • 2011
  • Membrane distillation process was used for desalination of hot (333 K) geothermal water, which was applied in the plant producing heating water. The investigated water contained 120 g salts/$dm^3$, mainly NaCl. The mineral composition was studied using an ion chromatography method. The obtained rejection of solutes was closed to 100%, but the small amounts of $NH_3$ also diffused through the membrane together with water vapour. However, the composition of obtained distillate allowed to use it as a makeup water in the heating water system. The geothermal water under study was concentrated from 120 to 286 g NaCl/$dm^3$. This increase in the solution concentration caused the permeate flux decline by a 10-20%. The geothermal water contained sulphates, which was subjected to two-fold concentration to achieve the concentration 2.4-2.6 g $SO{_4}{^{2-}}/dm^3$ and the sulphates then crystallized in the form of calcium sulphate. As a results, an intensive membranes scaling and the permeate flux decline was observed. The XRD analysis indicated that beside the gypsum also the NaCl crystallites were deposited on the membrane surfaces. The fresh geothermal water dissolved the mixed $CaSO_4$ and NaCl deposit from the membrane surface. This property can be utilized for self-cleaning of MD modules. Using a batch feeding of MD installation, the concentration of geothermal water was carried out over 800 h, without significant performance losses.

Adsorption properties of activated carbon prepared from pre-carbonized petroleum coke in the removal of organic pollutants from aqueous solution

  • Ahmed, S.A. Sayed;El-Enin, Reham M.M. Abo;El-Nabarawy, Th.
    • Carbon letters
    • /
    • v.12 no.3
    • /
    • pp.152-161
    • /
    • 2011
  • Activated carbon was prepared from pre-carbonized petroleum coke. Textural properties were determined from studies of the adsorption of nitrogen at 77 K and the surface chemistry was obtained using the Fourier-transform infrared spectrometer technique and the Boehm titration process. The adsorption of three aromatic compounds, namely phenol (P), p-nitrophenol (PNP) and benzoic acid (BA) onto APC in aqueous solution was studied in a batch system with respect to contact time, pH, initial concentration of solutes and temperature. Active carbon APC obtained was found to possess a high surface area and a predominantly microporous structure; it also had an acidic surface character. The experimental data fitted the pseudo-second-order kinetic model well; also, the intraparticle diffusion was the only controlling process in determining the adsorption of the three pollutants investigated. The adsorption data fit well with the Langmuir and Freundlich models. The uptake of the three pollutants was found to be strongly dependent on the pH value and the temperature of the solution. Most of the experiments were conducted at pH 7; the $pH_{(PZC)}$ of the active carbon under study was 5.0; the surface of the active carbon was negatively charged. The thermodynamic parameters evaluated for APC revealed that the adsorption of P was spontaneous and exothermic in nature, while PNP and BA showed no-spontaneity of the adsorption process and that process was endothermic in nature.