• Title/Summary/Keyword: solute crystallization

Search Result 10, Processing Time 0.022 seconds

High-Purity Purification of Indole Contained in Coal Tar Fraction - Separation of Close Boiling Mixtures of Indole by Solute Crystallization - (콜타르 유분 중에 함유된 인돌의 고순도 정제 - 용액 결정화에 의한 인돌 유사 비점 혼합물의 분리 -)

  • Kim, Su Jin;Kang, Ho-Cheol;Jeong, Hwa Jin
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.238-241
    • /
    • 2010
  • The purification of indole from 54.3wt% indole fraction (temperature range of distillate: $250{\sim}255^{\circ}C$) recovered by extraction-distillation combination of coal tar fraction (temperature range of distillate: $240{\sim}265^{\circ}C$) was examined by solute crystallization. The feed consists of eight components such as quinoline, iso-quinoline, indole, quinaldine, 1-methylnaphthalene, 2-methylnaphthalene, biphenyl and phenyl ether. Hexane and an aqueous solution of methanol (50 : 50 vol%) were used as the crystallization solvent and the coolant, respectively. A batch stirred tank of glass material was used as a crystallization apparatus. By increasing the operation temperature and the volume ratio of solvent to feed at initial, the purity of indole increas ed, but yields of indole showed a decreasing tendency. Solute crystallization method using hexane as a solvent was excellent because the purity of 99.3 wt% indole was recovered at the yield of 50% without washing operation.

Separation and Purification of 2,6-Dimethylnaphthalene Present in the Fraction of Light Cycle Oil by Crystallization Operation (결정화조작에 의한 접촉분해경유 유분에 함유된 2,6-디메틸나프탈렌의 분리·정제)

  • Kim, Su Jin
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.799-804
    • /
    • 2018
  • The separation and purification of 2,6-dimethylnaphthalene (2,6-DMN) present in the light cycle oil (LCO) fraction was investigated by a crystallization operation. Solute crystallization (SC) was performed using LCO fraction and iso-propyl alcohol as a raw material and a SC solvent, respectively. Increasing the operation temperature and volume ratio of the solvent to the raw material (S/F) resulted in improving the purity of 2,6-DMN, whereas the yield decreased. As a result of the crystallization operation in three steps containing the SC using LCO fraction (13.9% 2,6-DMN) and isopropyl alcohol, the re-crystallization 1 (RC 1) using the crystals recovered by SC and methyl acetate, and RC 2 using the crystals recovered by RC 1 and methyl acetate, the crystal with 99.9% 2,6-DMN was recovered with 19.5% yield. Furthermore, the separation and purification process of 2,6-DMN present in the LCO fraction was reevaluated by using the experimental results obtained through each operations of SC, RC 1, and RC 2.

Separation of 2,6-dimethylnaphthalene in Dimethylnaphthalene Isomers Mixture by Crystallization Operation (결정화 조작에 의한 Dimethylnaphthalene 이성체 혼합물 중의 2,6-dimethylnaphthalene의 분리)

  • Kang, Ho-Cheol;Kim, Su Jin
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.116-120
    • /
    • 2014
  • Light cycle oil (LCO), one of the by-products of the catalytic cracking gasoline manufacturing process, contains a lot of valuable aromatics. In particular, 2,6-dimethylnaphthalene (2,6-DMN) contained in LCO has been becoming important as the basic material of polyethylene naphthalate plastic and liquid crystal polymer, etc. If it were possible to separate and purify the valuable aromatic hydrocarbons (such as 2,6-DMN) from LCO, which have only been used as fuel mixed with heavy oil, it would be very meaningful in terms of the efficient use of resources. We investigated the high-purity purification of 2,6-DMN by the combined method of melt crystallization (MC) and solute crystallization (SC). The enriched DMN isomer mixtures (concentration of 2,6-DMN : 10.43%) recovered from LCO by distillation-extraction combination and the crystal recovered by MC used as raw materials of MC and SC, respectively. The solvent of SC used was a mixture of methanol and acetone (60 : 40 wt%). The crystal of 2,6-DMN with a high-purity of 99.5% was recovered by MC-SC combination. We confirmed that the MC-SC combination was one of the very useful combinations for the high-purity purification of 2,6-DMN contained in the enriched DMN isomer mixtures.

Synthesis of Amorphous Matrix Nano-composite in Al-Cu-Mg Alloy

  • Kim, Kang Cheol;Park, Sung Hyun;Na, Min Young;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.44 no.3
    • /
    • pp.105-109
    • /
    • 2014
  • The microstructure of as-quenched $Al_{70}Cu_{18}Mg_{12}$ alloy has been investigated in detail using transmission electron microscopy. Al nano-crystals about 5 nm with a high density are distributed in the amorphous matrix, indicating amorphous matrix nano-composite can be synthesized in Al-Cu-Mg alloy. The high density of Al nano-crystals indicates very high nucleation rate and sluggish growth rate during crystallization possibly due to limited diffusion rate of solute atoms of Cu and Mg during solute partitioning. The result of hardness measurement shows that the mechanical properties can be improved by designing a nano-composite structure where nanometer scale crystals are embedded in the amorphous matrix.

High-Purity Purification of Indole Contained in Coal Tar Absorption Oil by Extraction-Distillation-Crystallization Combination (추출-증류-결정의 조합에 의한 콜타르 흡수유 중에 함유된 인돌의 고순도 정제)

  • Kim, Su Jin
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.330-336
    • /
    • 2014
  • Purification of indole contained in model coal tar absorption oil was examined by extraction-distillation-crystallization combination. The absorption oil consists of nine components such as four kinds of nitrogen heterocyclic compounds (9.2% quinoline, 2.4% iso-quinoline, 4.7% indole, 2.4% quinaldine), three kinds of bicyclic aromatic compounds (14.2% 1-methylnaphthalene, 31.8% 2-methylnaphthalene, 23.5% dimethylnaphthalene), 5.5% biphenyl and 3.3% phenyl ether. 99.5% indole was recovered by combination of formamide extraction-distillation-solute crystallization using n-hexane. Furthermore, the recovery process of indole contained in coal tar absorption oil was studied by using the experimental results obtained by each operation of this work.

Partitioning of Si in Fe-Zr-Si-B Nanocrystalline Alloys

  • Waniewska, A.Slawska;Greneche, J.M.;A.Inoue
    • Journal of Magnetics
    • /
    • v.4 no.1
    • /
    • pp.1-4
    • /
    • 1999
  • The microstructure and magnetic properties of$ Fe_{87}Zr_7Si_4B_2$ nanocrystalline alloys were studied by magnetization measurements and M ssbauer spectrometry over a wide temperature range. Three well resolved spectral components have been found and attributed to bcc-Fe grains (with almost pure iron structure), residual amorphous matrix enriched with solute elements and interfaces formed at the grain-matrix boundaries. It has been shown that, contrary to the expectation, during crystallization the atomic segregation occurs leading to the formation of primary bcc-Fe grains and the partition of Si atoms into the residual amorphous matrix.

  • PDF

Polymorphism of Calcium Carbonate Crystal by Silk Digested Amino Acid (실크 분해 아미노산에 의한 탄산칼슘 결정의 polymorphism)

  • Kim, Jin-Ho;Kim, Jong Min;Kim, Woo Sik;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1107-1112
    • /
    • 2008
  • Crystallization of calcium carbonate was performed by using aqueous calcium chloride and sodium carbonate for operational simplicity. Reaction time, solute concentrations, pH, and organic additive were varied to get calcium carbonate crystals. Silk fibroin was used as the additive to understand the change of morphology of calcium carbonate crystal. The crystals were analyzed by FE-SEM, XRD, and FT-IR. Reaction time, and pH mainly affected the morphology of crystals. Besides, it was found that silk fibroin inhibited the formation of vaterite and promoted the calcite forms.

Microwave-Assisted Heating of Electrospun SiC Fiber Mats

  • Khishigbayar, Khos-Erdene;Joo, Young Jun;Cho, Kwang Youn
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.499-505
    • /
    • 2017
  • Flexible silicon carbide fibrous mats were fabricated by a combination of electrospinning and a polymer-derived ceramics route. Polycarbosilane was used as a solute with various solvent mixtures, such as toluene and dimethylformamide. The electrospun PCS fibrous mats were cured under a halogen vapor atmosphere and heat treated at $1300^{\circ}C$. The structure, fiber morphology, thermal behavior, and crystallization of the fabricated SiC fibrous mats were analyzed via scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermal imaging. The prepared SiC fibrous mats were composed of randomly distributed fibers approximately $3{\mu}m$ in diameter. The heat radiation of the SiC fiber mats reached $1600^{\circ}C$ under microwave radiation at a frequency of 2.45 GHz.

Solidification Cracking Behavior in Austenitic Stainless Steel Laser Welds (Part 2) -Effects of δ-ferrite Crystallization and Solidification Segregation Behavior on Solidification Cracking Susceptibility- (오스테나이트계 스테인리스강 레이저 용접부의 응고균열 거동 (Part 2) - δ 페라이트 정출 및 응고편석 거동에 따른 응고균열 민감도 변화 -)

  • Chun, Eun-Joon;Lee, Su-Jin;Suh, Jeong;Kang, Namhyun;Saida, Kazuyoshi
    • Journal of Welding and Joining
    • /
    • v.34 no.5
    • /
    • pp.61-69
    • /
    • 2016
  • A numerical simulation of the solid/liquid coexistence temperature range, using solidification segregation model linked with the Kurz-Giovanola-Trivedi model, explained the mechanism of the BTR shrinkage (with an increase in welding speed) in type 310 stainless steel welds by reduction of the solid/liquid coexistence temperature range of the weld metal due to the inhibited solidification segregation of solute elements and promoted dendrite tip supercooling attributed to rapid solidification of laser beam welding. The reason why the BTR enlarged in type 316 series stainless welds could be clarified by the enhanced solidification segregation of impurity elements (S and P), corresponding to the decrement in ${\delta}-ferrite$ crystallization amount at the solidification completion stage in the laser welds. Furthermore, the greater increase in BTR with type 316-B steel was determined to be due to a larger decrease in ${\delta}-ferrite$ amount during welding solidification than with type 316-A steel. This, in turn, greatly increases the segregation of impurities, which is responsible for the greater temperature range of solid/liquid coexistence when using type 316-B steel.

Application of Supercritical Fluid in Energetic Materials Processes (화약제조 공정의 초임계 유체 응용)

  • Song, Eun-Seok;Kim, Hwa-Yong;Kim, Hyoun-Soo;Lee, Youn-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.77-87
    • /
    • 2006
  • Micro- or nano-size particles are required to improve the combustion efficiency and stability in the case of solid explosives and propellants. The micro-structural properties of an energetic material strongly influence the combustion and explosion behavior. However, the traditional size reduction techniques, including milling, are not suitable for production of ultra-fine size particles. As an alternative to the traditional techniques, various re-crystallization processes based on supercritical fluids have recently been proposed. Supercritical fluids are fluids at temperatures and pressures above their critical point. In principle, they do not give problems of solvent contamination as they are completely released from the solute when the decompression occurs. Rapid Expansion Supercritical Solutions(RESS) and Supercritical Anti-Solvent Process(GAS/SAS) are representatives of a nano-size particle formation process of energetic materials using supercritical fluids. In this work, various fine particle formation processes using supercritical fluids are discussed and the results are presented.