• Title/Summary/Keyword: soluble microbial product (SMP)

Search Result 6, Processing Time 0.021 seconds

Treatment of Food Processing Wastewater bearing Furfural by Candida utilis (Candida utilis를 이용한 furfural 함유 식품가공 폐수의 처리)

  • 박기영;정진영
    • KSBB Journal
    • /
    • v.18 no.4
    • /
    • pp.272-276
    • /
    • 2003
  • A yeast treatment process was applied to treat food processing organic wastewater containing inhibitory material to anaerobic bacteria. The wastewater contained high concentration of the furfural as a by-product from the food processing. Aerobic yeast (Candida utilis) was selected to remove organics in wastewater. The batch test showed that the wastewater had an inhibition to anaerobic bacteria. The optimum level of temperature for yeast treatment was ranged from 25 to 45$^{\circ}C$. The pH range from 4 to 8 was favorable to yeast growth. The continuous flow reactor was operated at various SRTs. The results were satisfactory with the reduction of COD up to 90% at SRT of more than 1 day. Through the kinetic study of the yeast, the remained COD concentration was mainly caused by the formation of soluble microbial product (SMP).

Valuation of Molecular Weight Distribution Charteristics of Soluble Microbial Products(SMP) Using the Batch Filtration Test (회분여과 방식을 통한 생물대사산물의 분자량 분포 특성 평가)

  • 정태영;차기철;이영무;한상국
    • Membrane Journal
    • /
    • v.12 no.1
    • /
    • pp.21-27
    • /
    • 2002
  • The formation of soluble microbial products(SMP) and molecular weight distribution on loading rate were observed in batch-type culture medium, which phenol was fed as a substrate. The molecular weight destribution was obtained by using 30K, 100K dalton and $0.45{\mu}$ membrane filters. When the phenol concentrationas a substrate was 120, 230 and 440 mg/L , the specific substrate utilization rate(q) showed 0.639, 1.281 and 1.744 mgTOC/mgMLSS/day, respectively. The endogenous biomass decay rate constant($K_d$) at each substrate concentration was 0.00536, 0.0661 and 0.0749($day^1$), respectively. The $SMP_e$ product rate constant($k_{SMP}_ e$) showed 0.006, 0.0058 and 0.0057($day^1$), respectively. The initial influent substrate during the course of time degraded and produced $SMP_s$. The $SMP_s$ was converted to the $SMP_{nd}$ and endogenous phase converted to the $SMP_e$ ingredients. The molecula weight distribution on loading rate was converted to a higher MW during the course of time.

Impacts of sludge retention time on membrane fouling in thermophilic MBR

  • Ince, Mahir;Topaloglu, Alikemal
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.245-253
    • /
    • 2018
  • The aim of this study is to investigate the membrane fouling in a thermophilic membrane bioreactor (TMBR) operated different sludge retention times (SRTs). For this purpose, TMBR was operated at four different SRTs (10, 30, 60 and 100 days). Specific cake resistance (${\alpha}$), cake resistance, gel resistance, total resistance, MFI (modified fouling index) and FDR (flux decrease ratio) were calculated for all SRTs. It was observed that flux in the membrane increases with rising SRT although the sludge concentrations in the TMBR increased. The steady state flux was found to be 31.78; 34.70; 39.60 and 43.70 LMH ($Liter/m^2/h$) for the SRTs of 10, 30, 60 and 100 days respectively. The concentrations of extracellular polymeric substance (EPS) and soluble microbial product (SMP) decreased with increasing SRT. The membrane fouling rate was higher at shorter SRT and the highest fouling rate appeared at an SRT of 10 d. Both the sludge cake layer and gel layer had contribution to the fouling resistance, but the gel layer resistance value was dominant in all SRTs.

Performance and antifouling properties of PVDF/PVP and PSf membranes in MBR: A comparative study

  • Hazrati, Hossein;Karimi, Naser;Jafarzadeh, Yoones
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.159-166
    • /
    • 2020
  • In this study, the performance and antifouling properties of polysulfone (PSf) and polyvinylidene fluoride/polyvinylpyrrolidone (PVDF/PVP) membranes in a membrane bioreactor (MBR) were investigated. The membranes were prepared via phase inversion method, and then characterized by a set of analyses including contact angle, porosity and water flux and applied in a lab-scale MBR system. Soluble microbial product (SMP), extracellular polymeric substance (EPS), FTIR, gel permission chromatography (GPC) and particle size distribution (PSD) analyses were also carried out for MBR system. The results showed that the MBR with PSf membrane had higher hydrophobic organic compounds which resulted in formation of larger flocs in MBR. However, in this MBR had high compressibility coefficient of cake layer was higher (n=0.91) compared to MBR with PVDF/PVP membrane (n=0.8); hence, the fouling was more profound. GPC analysis revealed that compounds with molecular weight lower than 2 kDa are more formed on PSf membrane more than PVDF/PVP membrane. The results of FTIR analysis confirmed the presence of polysaccharide and protein compounds on the cake layer of both membranes which was in good agreement with EPS analysis. In addition, the results showed that their concentration was higher for the cake on PSf membrane.

Investigation of influence of nano H-ZSM-5 and NH4-ZSM-5 zeolites on membrane fouling in semi batch MBR

  • Sajadian, Zahra Sadat;Hazrati, Hossein;Rostamizadeh, Mohammad
    • Advances in nano research
    • /
    • v.8 no.2
    • /
    • pp.183-190
    • /
    • 2020
  • The objectives of this research were the reduction of membrane fouling and improvement of sludge properties by using synthesized H-ZSM-5 and NH4-ZSM-5 zeolites. These two nano zeolites were synthesized and added to the membrane bioreactor (MBR). Three similar MBRs with the same operational condition were used in order to evaluate their effect on the mentioned matters. The evaluated parameters were trans-membrane pressure (TMP), Fourier-transform infrared spectroscopy (FTIR), particle size distribution (PSD), soluble microbial product (SMP), extracellular polymeric substances (EPS) and, excitation-emission matrix (EEM). The MBR0 was without any additional zeolite while 0.4 g/L of H-ZSM-5 and NH4-ZSM-5 were added to MBRHZSM-5 and MBRNH4ZSM-5, respectively. The COD removal of the MBR0, MBRH-ZSM-5 and MBRNH4-ZSM-5 were 87.5%, 93.3% and 94.6%, respectively. The TMP of the MBRH-ZSM-5 was 45% less than MBR0 whereas the reduction for MBRNH4-ZSM-5 was 65.5%. Also results showed that both H-ZSM-5 and NH4-ZSM-5 caused reduction in protein and polysaccharide related EPS but the NH4-ZSM-5 had better performance toward the elimination of organic compounds.

Removal of Dissolved Organic Matters in Drinking Water by GAC adsorption using RSSCT (RSSCT를 이용한 GAC의 상수원수 내 용존유기물질 제거)

  • Kim, Young Il;Bae, Byung Uk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.5
    • /
    • pp.727-736
    • /
    • 2006
  • Granular activated carbon (GAC) has been identified as a best available technology (BAT) by the United States Environmental Protection Agency (USEPA) for removal disinfection by-product (DBP) precursors, such as dissolved organic carbon (DOC) and dissolved organic nitrogen (DON). Rapid small-scale column test (RSSCT) were used to investigate four types of carbon (F400, Norit1240, Norit40S, and Aquasorb1500) for their affinity to absorb natural organic matter (NOM). DOC, $UV_{254}$, and Total dissolved nitrogen (TON) concentrations were measured in the column effluent to track GAC breakthrough. DOC and $UV_{254}$ breakthrough occurred at around 3500 bed volumes (BVs) of operation for all GACs investigated. The $UV_{254}$ breakthrough curves showed 33% to 48% at 8000 BVs, when the DOC was 48% to 65%. All GACs showed greater removal in DOC than $UV_{254}$. The NORIT1240 GAC was determined to have the highest adsorption capacity for DOC and $UV_{254}$. The removal of nitrate (NOTN) had not broken through over BVs. The initial TON breakthrough curves were started around 50%, when the DOC breakthrough was only 10 % at 500 BVs. The curves were gradually increased after 3500 BVs and approximately 69% through 81% of TON breakthrough occurred at 8000 BVs. All of the GACs were able to remove TON, in the case of this investigation the majority of the TON was present as DON. Because nitrate nitrogen was seldom removed and ammonium nitrogen ($NH_3-N$) was not detected in the effluent from RSSCTs even though raw water. The carbon usage rate of DOC was from 2 to 6 times less than that of TON. The NORIT1240 GAC demonstrated the best performance in terms of DOC removal, while the F400 GAC was best in terms of TON removal. Excitation emission matrix(EEM) analysis was used to show that GAC adsorption successfully removed most of Humic-like DOC and Fulvic-like DOCs. However, soluble microbial product(SMP)-like DOC in the absence of raw water were detected in the NORIT40S and Aquasorb1500 GAC. The authors assumed that this results is due probably to the part of GAC in the RSSCT which was converted into biological activated carbon(BAC). To compare with organics removal by GAC according to preloading, the virgin GACs had readily accessible sites that were adsorbed DOC more rapidly than preloaded GACs, but the TDN removal had not showed differences between those GACs.