• Title/Summary/Keyword: solubility

Search Result 3,014, Processing Time 0.029 seconds

Property of Filature Water against the Solubility of Cocoon Layer Sericin Seoul National Silk Conditioning House (제사용수의 수질이 견층 세리신(Sericin) 용해에 미치는 영향 (제2보))

  • 김병호;원성희
    • Journal of Sericultural and Entomological Science
    • /
    • v.15 no.2
    • /
    • pp.45-53
    • /
    • 1973
  • 1. The sericin solubility increased rapidly as the increase of water M-alkalinity. 2. The acidity of the treated water was nutralized at the over 25ppm of M-alkalinity. 3. The more M-alkalinity of the sample water is, the more M-alkalinity was found after cocoon treat. 4. The total hardness of sample water seemed to be droped as M-alkalinity increased. 5. The sericin solubility also seemed to be droped as the increase of water acidity. 6. In case of treat finish with cocoon, the acidity and total hardness seemed to increase as the acidity of the water increased, but M-alkalinity was nutralized at 20~40 ppm of water acidity or the M-alkalinity could not be found in case over 40ppm of acidity. 7. In case increase of iron component with sample water, sericin solubility seemed to drop down, and mangan component showed the same nature but dull drop. 8. After cocoon was treated with water, acidity, M-alkalinity and total hardness were increased by the extraction from cocoon shell because of pH and treating temperature but not because of iron componnent. Mangan component, however, affected as to increase of acidity and total hardness but to decrease for M-alkalinity. 9. In case change of M-alkalinity and total hardness, sericin solubility has increased also. 10. In case constant pH and total hardness, the more M-alkalinity is, the more sericin solubility was found. 11. In case constant pH, total hardness, and M-alkalinity, the more acidity is, the less sericin solubility was found. 12. In case constant pH(6.8) and M-alkalinity, the more total hardness is, the less sericin solubility was found. 13. Though the combination of water, high solubility water, medium solubility water and low solubility water were prepared. The high solubility water desolved sericin 2.2% more than low solubility water. And the medium solubility water desolved sericin as much as 2.4~2.9%. 14. It was found that the most important factors for filature water are pH, M-alkalinity, acidity and total hardness which may need more words for optimum filature water development. 15. In case of repeat use of water, the buffer action of water has increased so that the sericin solubility to be decreased.

  • PDF

Solubilization of CPD, a Novel Antivirus Compound Containing Pirimidine Structure, in Aqueous Solution (신규 피리미딘 구조를 함유한 항바이러스성 화합물 CPD의 수용액중 가용화)

  • Song Sukgil;Kweon Ho-Seok;Chung Youn Bok
    • YAKHAK HOEJI
    • /
    • v.50 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • The purpose of the present study was to formulate the aqueous solution of 1-cyclopent-3-enylmethyl-6(3,5-dimethyl-benzoyl)-5-ethyl-1H-pyrimidine-2,4-dione (CPD), a novel antivirus compound containing pirimidine structure. For this purpose, the effects of various solubilization agents such as cosolvents [ethanol, propylene glycol (PG), polyethylene glycol 300 (PEG 300), polyethylene glycol 400 (PEG 400), glycerin], surfactants (Tween 80, Cremophor$^{(R)}$ RH40, Cremophor$^{(R)}$ EL, Poloxamer 407, Poloxamer 188) and a complexation agent [hydroxypropyl-${\beta}$-cyclodextrin (HPBCD)] , on the solubility of CPD in aqueous solution were evaluated. The solubility of CPD in water was under $1\;{\mu}g/ml$ at $20^{\circ}C$. Cosolvents such as ethanol, PG, PEG 300, PEG 400 and glycerin did not enhance the solubility of CPD at the $0{\sim}40\%$ concentration range. The solubility of CPD was significantly elevated by the addition of cosolvents over the $80\%$ concentration range. On the other hand, tween 80, Cremophor$^{(R)}$ L, Cremophor$^{(R)}$ RH40, and HPBCD showed enhanced effects on the solubility of CPD. The enhanced effects of Poloxamer 407 or Poloxamer 188 on the CPD solubility were less pronounced compared with tween 80, Cremophor$^{(R)}$ L or Cremophor$^{(R)}$ RH40. As a results, tween 80 aqueous solution was selected as an optimum solvent system. The aqueous solutions containing $20\%$ tween 80 were formulated as a dosing solution containing CPD for its intraperitoneal and intrahypodermic administration, respectively, The formular showed physical stability after stored for 7 days at $4^{\circ}C$.

Modifications of skim milk protein by Meju protease and its effects on solubility, emulsion and foamming properties (메주 단백질 가수분해 효소가 탈지 우유의 기능성에 미치는 영향)

  • Lee, Jin-sil;Yoon, Sun
    • Korean journal of food and cookery science
    • /
    • v.9 no.4
    • /
    • pp.278-283
    • /
    • 1993
  • This study was attempted to investigate the effects of enzymatic modification of milk protein with protease on functional properties. The selected functional properties were solubility, emulsifying activity (EA), emulsion stability(ES), foam expansion(FE), and foam stability(FS). These properties were measu-red from pH 3.0 to pH 8.0. The proteases used in this study were iaolated from Meju(fermemted soybean) and had specific activity of 250 units/㎎ protein at pH 7.0, 1600 units of pretense was used for 1gr. of skim milk protein. Skim milk showed 30.5% degree of hydrolysis for 1 hr. and 36.4% degree of hydrolysis for 3.5 hrs. of protease treatment at pH 7.0. Solubility of native skim milk, control, 1 hr. and 3.5 hrs. groups were 3.37, 3.64, 10.21, 14.34%o at pH 4.0 respcetively. The emulsifying activity of native skim milk, control, 1 hr. and 3.5 hrs. groups were 38.8,42.0,43.0,46.7ft at pH 4.0, respectively. Enzymatic modification resulted in the increase of solubility and emulsifying activity at pH 4.0. However at pH 5.0 emulsifying activity of 1 hr. and 3.5 hr. group were lower than native skim milk and control groups. 1 hr. protease treatment was found to be most effective way of increasing foam expansion at pH 4.0 to 6.0. It was supported that, protease treated skim milk can be used to improve solubility, emulsifying activity, foam expansion at acid pH. meju protease. skim milk, solubility, emulsion, foam.

  • PDF

Enhanced Effect of Gluten Hydorlysate on Solubility and Bioavailability of Calcium in Rats (글루템 가수분해물에 의한 칼슘의 가용화 및 체내이용성 증진 효과)

  • 이연숙
    • Journal of Nutrition and Health
    • /
    • v.30 no.1
    • /
    • pp.40-47
    • /
    • 1997
  • Dietary peptides have recently received attention regarding their beneficial effects on nutrient metabolism since the caseinphosphoptides obtained from casein hydrolysate are generally believed to enhance the intestinal absorption of Ca. The two experiments were conducted to investigate the effects of various hydrolyzed fractions of gluten on Ca bioavailability. The gluten hydrolysate of dietary components was produced by enzymatic hydrolysis of gluten whereas gluten hydrolysate supernationt and its precipiate resulted from centrifugation. In experiment I, the rats were for 4 weeks fed the 4 kinds of diets containing same amount of nitrogen and calories and diffeing only in the forms of nitrogen sources. The diets were gluten (G), gluten hydrolysat(GH), gluten hydrolysate supernatant(GHS) and gluten hydrolysate precipitatie(GHP). Determination was made for the body weight gain, serum Ca concentration, Ca solubility in small intestinal contents, bone weight, length and stength, bone ash and Ca content, and Ca balance, respectively. No significant difference was noticed as regards growth, serum Ca, and bone dimension and Ca content among rat groups. More significant increase was observed with regard to Ca absorption and intestinal solubility in the rats receiving the GH or GHS diet which containe crude gluten peptides, than in those subjected to G or GHP diet. In experiment II, in vitro determination for Ca solubility was made to ascertain the mechanism responsible for the effects of gluten peptides on Ca absorption. The 10mM Ca in potassium phosphate buffer solution(pH 7.0) incubated for 3 hours at 37$^{\circ}C$ by the GHS fraction, was observed to be capable of increasing the Ca solubility at 5-25mg/ml concentration of gluten peptides. These observations suggest that the gluten peptides from gluten hydrolysate may enhance the Ca absorption efficiency by increasing the solubility of Ca in small intestine.

  • PDF

A Study on the Absorption of $CO_2$Using Alkanolamine Solution (Alkanolamine계 수용액을 이용한 이산화탄소 흡수에 관한 연구)

  • 이성남;송호철;현재휴;박진원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.5
    • /
    • pp.407-414
    • /
    • 2001
  • In this study, the absorption kinetics of $CO_2$onto a mixture of AMP (2-amino-2-methyl-1-propanol) MEA (monoethanolamine) water were investigated at 30 and 4$0^{\circ}C$ using a packed absorption tower. Solubility and absorption rate of $CO_2$into alkanolamine solutions and optimal condition of $CO_2$absorption process were investigated. The experimental conditions are as follows; temperature of 30 and 4$0^{\circ}C$, gas flow rate of 3ι/min for the absorption tower, and liquid flow rate of 0.1ι/min. Feed gas was a mixture of 85% $N_2$and 15% $CO_2$. The experimental results showed that AMP had greater solubilities and faster absorption rates than MEA and DEA. In addition, MEA had the fastest initial reaction rate. To improve the properties of AMP which have low initial reaction rate and high cost, AMP was used with MEA. The mixing ratio was also changed in constant total molarity of 1,2,3 and 4. The experimental results can be summarized as follows: (1) in solubility experiment, the addition of MEA in constant total polarity decreased the solubility of $CO_2$in AMP/MEA mixture. (2) from 0 to about 0.3 in mixing ratio, the solubility of $CO_2$in AMP/MEA mixture had little differences compared with the sum of solubility of AMP only and solubility of MEA only . (3) mixing ratio of 0.3 was found to be an optimal point with the fastest $CO_2$absorption rate.

  • PDF

Solubilization of IH-901, a Novel Intestinal Metabolite of Ginseng Saponin, in Aqueous Solution (인삼사포닌의 소장내 최종대사물인 IH-901의 수용액중 가용화)

  • Kwon, Oh-Seung;Chung, Youn-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.5
    • /
    • pp.385-391
    • /
    • 2004
  • The purpose of the present study was to formulate the aqueous solution of $20-O-{\beta}-D-glucopyranosyl-20(S)-protopanaxadiol\;(IH-901)$, an intestinal bacterial metabolic derivative from Ginseng protopanaxadiol saponin. For this purpose, the effects of various solubilization agents such as cosolvents [ethanol, propylene glycol (PG), polyethylene glycol 300 (PEG 300), polyethylene glycol 400 (PEG 400), glycerin], surfactants $(Tween\;80,\;Cremophor^{\circledR}\;RH40,\;Cremophor^{\circledR}\;EL,\;Poloxamer\;407,\;Poloxamer\;188)$ and a complexation agent $[hydroxypropyl-{\beta}-cyclodextrin\;(HPBCD)]$, on the solubility of IH-90l in aqueous solution were evaluated. The solubility of IH-901 in water was under $1\;{\mu}g/ml\;at\;20^{\circ}C$. Cosolvents such as ethanol, PG, PEG 300, PEG 400 and glycerin did not enhance the solubility of IH-901 at the 0 - 40% concentration range. The solubility of IH-901 was significantly elevated by the addition of cosolvents over the 80% concentration range. On the other hand, tween 80, $Cremophor^{\circledR}\;EL,\;Cremophor^{\circledR}\;RH40$ and HPBCD showed enhanced effects on the solubility of IH-901. The enhanced effects of Poloxamer 407 or Poloxamer 188 on the IH-901 solubility were less pronounced compared with $Cremophor^{\circledR}\;EL\;or\;Cremophor^{\circledR}\;RH40$. As a results, $Cremophor^{\circledR}$ aqueous solution was selected as an optimum solvent system. The aqueous solutions containing 10% $Cremophor^{\circledR}\;EL$ and 7% $Cremophor^{\circledR}\;RH40$ were formulated as dosing solutions containing 5.0 mg/ml of IH-901 for its intravenous and oral administration, respectively. The formular showed physical stability after stored for 7 days at $4^{\circ}C$.

EFFECT OF CARBONATE ON THE SOLUBILITY OF NEPTUNIUM IN NATURAL GRANITIC GROUNDWATER

  • Kim, B.Y.;Oh, J.Y.;Baik, M.H.;Yun, J.I.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.552-561
    • /
    • 2010
  • This study investigates the solubility of neptunium (Np) in the deep natural groundwater of the Korea Atomic Energy Research Institute Underground Research Tunnel (KURT). According to a Pourbaix diagram (pH-$E_h$ diagram) that was calculated using the geochemical modeling program PHREEQC 2.0, the redox potential and the carbonate ion concentration both control the solubility of neptunium. The carbonate effect becomes pronounced when the total carbonate concentration is higher than $1.5\;{\times}\;10^{-2}$ M at $E_h$ = -200 mV and the pH value is 10. Given the assumption that the solubility-limiting stable solid phase is $Np(OH)_4(am)$ under the reducing condition relevant to KURT, the soluble neptunium concentrations were in the range of $1\;{\times}\;10^{-9}$ M to $3\;{\times}\;10^{-9}$ M under natural groundwater conditions. However, the solubility of neptunium, which was calculated with the formation constants of neptunium complexes selected in an OECD-NEA TDB review, strongly deviates from the value measured in natural groundwater. Thus, it is highly recommended that a prediction of neptunium solubility is based on the formation constants of ternary Np(IV) hydroxo-carbonato complexes, even though the presence of those complexes is deficient in terms of the characterization of neptunium species. Based on a comparison of the measurements and calculations of geochemical modeling, the formation constants for the "upper limit" of the Np(IV) hydroxo-carbonato complexes, namely $Np(OH)_y(CO_3)_z^{4-y-2z}$, were appraised as follows: log $K^{\circ}_{122}\;=\;-3.0{\pm}0.5$ for $Np(OH)_2(CO_3)_2^{2-}$, log $K^{\circ}_{131}\;=\;-5.0{\pm}0.5$ for $Np(OH)_3(CO_3)^-$, and log $K^{\circ}_{141}\;=\;-6.0{\pm}0.5$ for $Np(OH)_4(CO_3)^{2-}$.

Effect of Molecular Structures on the Solubility Enhancement of Organic Contaminants by Amphiphiles (양수성 물질에 의한 유기오염물질의 수중 용해도 증가에 분자구조가 미치는 영향)

  • Cho, Hyun-Hee;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.755-764
    • /
    • 2000
  • Fate and transport of hydrophobic organic contaminants can be influenced by naturally-existing humic substances and surfactants applied to wash polluted soils in the subsurface environment. The objective of this paper is to study the solubility enhancement of four PAHs (polycyclic aromatic hydrocarbon) and p,p'-DDT in humic acid and surfactant solutions. As the number of aromatic ring is increased, the extent of solubility enhancement of PAHs by humic acid increased. Although the hydrophobicity of p,p'-DDT was the largest among five organic compounds used, the extent of solubility enhancement of p,p'-DDT by humic acid was lower than that of pyrene. In case of anionic surfactants, the extent of the increased solubility of five organic compounds by SDS and SDDBS was increased linearly, but the extent of the increased solubility of p,p'-DDT by MADS-12 was lower than that of perylene.

  • PDF

Solubility of Carbon Dioxide in Poly(ethylene glycol) Dimethyl Ether (Poly(ethylene glycol) Dimethyl Ether에 대한 이산화탄소의 용해도)

  • Lee, Eun-Ju;Yoo, Jung-Deok;Lee, Byung-Chul
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.230-236
    • /
    • 2017
  • Solubility data of carbon dioxide ($CO_2$) in poly(ethylene glycol) dimethyl ether (PEGDME) are presented at pressures up to about 50 bar and at temperatures between 303 K and 343 K. The solubilities of $CO_2$ were determined by measuring the bubble point pressures of the $CO_2+PEGDME$ mixtures with various compositions using a high-pressure equilibrium apparatus equipped with a variable-volume view cell. To observe the effect of the PEGDME molecular weight on the $CO_2$ solubility, the $CO_2$ solubilities in PEGDME with two kinds of molecular weight were compared. As the equilibrium pressure increased, the $CO_2$ solubility in PEGDME increased. On the other hand, the $CO_2$ solubility decreased with increasing temperature. When compared at the same temperature and pressure, the PEGDME with a higher molecular weight gave smaller $CO_2$ solubility on a mass fraction and molality basis, but gave greater $CO_2$ solubilities on a mole fraction basis.

Effect of pH, Redox Potential (Eh) and Carbonate Concentration on Actinides Solubility in a Deep Groundwater of Korea

  • Keum Dong-Kwon;Lee Han-Soo;Lee Chang-Woo
    • Nuclear Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.196-202
    • /
    • 2004
  • KAERI (Korea Atomic Energy Research Institute) is at present preparing a preliminary performance assessment to set up the HLW disposal concept of Korea. The solubility of the radionuclides contained in HLW is necessary as a source term in order to predict their potential migration in both the near and far fields. The solubility of actinides (Th, Am, U, Np and Pu) for a reference deep groundwater of Korea has been calculated using a geochemical code with thermodynamic data selected by a peer review of existing thermodynamic databases and literature. The solubilities from the experimental study and/or field observations from natural analogue studies are compared. The sensitivity of solubility to the variability of three main parameters of groundwater (pH, Eh, and carbonate concentration) is also investigated. The results of the sensitivity analysis show that the solubility of actinides strongly depends on the parameters considered. Within the range of parameter values studied (pH=7 to 10, Eh=-0.4 to -0.1V, and carbonate concentration=1.E-5 to 1.E-2 mol/L), the solubility of each actinide exists between 1.4E-10 and 1.6E-6 mol/L for Am, 4.9E-9 and 2.8E-6 mol/L for Th, 3.2E-9 and 5.7E-4 mol/L for U, 1.1E-9 and 1.0E-7 mol/L for Np, and 4.0E-11 and 2.8E-6 mol/L for Pu, respectively.