• Title/Summary/Keyword: solubility

Search Result 3,026, Processing Time 0.022 seconds

Preparation and Evaluation of Ketoconazole-loaded Solid-SNEDDS (Self-Nanoemulsifying Drug Delivery System) using Various Solidification Carriers (다양한 분말화 담체를 이용한 케토코나졸 함유 자가미세유화약물전달시스템의 제조 및 평가)

  • Da Young Song;Kyeong Soo Kim
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.493-501
    • /
    • 2023
  • This study aimed to develop a solid self-nanoemulsifying drug delivery system (solid-SNEDDS) to enhance the formulation of ketoconazole (KTZ), a BCS Class II drug with poor solubility. Ketoconazole, which is insoluble above pH 3, requires solubilization for effective delivery. This SNEDDS comprises oil, surfactant, and co-surfactant, which spontaneously emulsify in the gastrointestinal tract environment to form nanoemulsions with droplet sizes less than 100 nm. The optimal SNE-vehicle composition of oleic acid, TPGS, and PEG 400 at a 10:80:10 weight ratio was determined based on the smallest droplet size achieved. This composition was used to prepare liquid SNEDDS containing ketoconazole. The droplet size and polydispersity index (PDI) of the resulting liquid SNEDDS were analyzed. Subsequently, solid-SNEDDS was fabricated using a spray-drying method with solidifying carriers such as silicon dioxide, crospovidone, and magnesium alumetasilicate. The physicochemical properties of the solid-SNEDDS were characterized by scanning electron microscopy and powder X-ray diffraction, and its solubility, droplet size, and PDI were evaluated. In particular, the solid-SNEDDS containing ketoconazole and crospovidone in a 2:1 weight ratio exhibited significantly enhanced solubility, highlighting its potential for improved medication adherence and dissolution rates.

Effect of Phytate on the Solubility and Digestibility of Rapeseed Protein Isolate (분리 유채단백의 용해도와 소화율에 미치는 Phytate의 영향)

  • Cho, Hee-Kyung;Yoon, Jae-Young;Lee, Su-Rae
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.279-283
    • /
    • 1992
  • This study was undertaken to investigate the effects of added phytate and pH on the solubility and in vitro digestibility of low-phytate rapeseed protein isolate. Phytate content of low-phytate rapeseed protein isolate was 1.5%, as a result of 66% removal from defatted rapeseed flour and the protein: phytate ratio was 58:1. Solubility of rapeseed protein isolate at pH 2.0 and pH 11.5 was much higher than near the isoelectric point, pH 5.0. It's solubility was lowered by adding an increased amount of phytate especially at pH 2.0. The inhibitory effect of phytate toward pepsin digestibility of rapeseed protein isolate decreased by the increasing amount of phytate added. It is suggested that the production of low-phytate rapeseed protein isolate is necessary to improve the functionality and nutritional value in order to utilize it as food material.

  • PDF

Pharmaceutical Usefulness of Biopharmaceutics Classification System: Overview and New Trend

  • Youn, Yu-Seok;Lee, Ju-Ho;Jeong, Seong-Hoon;Shin, Beom-Soo;Park, Eun-Seok
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.spc
    • /
    • pp.1-7
    • /
    • 2010
  • Since the introduction of the biopharmaceutics classification system (BCS) in 1995, it has viewed as an effective tool to categorize drugs in terms of prediction for bioavailability (BA) and bioequivalence (BE). The BCS consist of four drug categories: class I (highly soluble and highly permeable), class II (low soluble and highly permeable), class III (highly soluble and low permeable) and class IV (low soluble and low permeable), and almost all drugs belong to one of these categories. Likewise, classifying drugs into four categories according to their solubility and permeability is simple and relatively not controversial, and thus the FDA adopted the BCS as a science-based approach in establishing a series of regulatory guidance for the industry. Actually, many pharmaceutical companies have gained a lot of benefits, which directly connect to cost loss and failure decrease in the early stage of drug development. Recently, instead of solubility, using dissolution characteristics (e.g. intrinsic dissolution rate) have provided an improvement in the classification in correlating more closely with in vivo drug dissolution rather than solubility by itself. Furthermore, a newly modified-version of BCS, biopharmaceutics drug disposition classification system (BDDCS), which classify drugs into four categories according to solubility and metabolism, has been introduced and gained much attention as a new insight in respect with the drug classification. This report gives a brief overview of the BCS and its implication, and also introduces the recent new trend of drug classification.

Enzymatic hydrolysis of insoluble silk sericin by Alcalase

  • Jung, Hye-Young;Bae, Do-Gyu
    • Journal of Sericultural and Entomological Science
    • /
    • v.42 no.1
    • /
    • pp.48-57
    • /
    • 2000
  • This study was undertaken to figure out the effects of hydrolysis conditions on the solubility of insoluble sericin, molecular weight distribution and thermal characteristics of hydrolysates in enzymatic hydrolysis by Alcalase 2.5L. It was indicated that the optimum treatment temperature and pH for the insoluble sericin were 50$\^{C}$ and 11, respectively. When the insoluble sericin was hydrolyzed with a various treatment conditions, the solubility of all hydrolysates were represented above 85% at given conditions. As the enzyme concentration increased, the solubility increased roughly, but the solubility increasement ratio was less above 2% enzyme concentration. As the treatment time increased, the solubility was also increased. It was showed in the molecular weight distribution of hydrolysates treated various enzyme concentrations and treatment times that when enzyme concentrations were 0.5, 2, 3%, the peaks of the distribution curve were shifted to left side which meant low molecular weight and was distributed much quantity with shifted to be left side, but treatment time was 6 hr. the peak was shifted to right side. When enzyme concentration was 5% and treatment time was below 2 hr., the peaks were shifted to right side, but treatment time was above 4hr. the peak was shifted to left side. The number-average molecular weights were distributed from 300 to 800 and those were decreased when treatment time was up to 4 hr., but increased a little when treatment time was 6hr. It was showed in the DSC curves of hydrolysates treated with treatment time of 0.5, 1, 2, 4, 6 hr. fixed 1% o.w.s enzyme concentration and control that the endothermic peak was observed near at 200$\^{C}$. The denaturation peak of the hydrolysates depending on treatment times had a tendency to shift to higher temperature. But, when the treatment time was 6 hr., the peak was shifted to lower temperature comparing another hydrolysates.

  • PDF

Enhancement of Dissolution Rate of Poorly Water-soluble Ibuprofen using Solid Dispersions and Inclusion Complex (고체분산체 및 포접화합물을 이용한 난용성 약물인 이부프로펜의 용출 속도의 증가)

  • Lee, Beom-Jin;Lee, Tae-Sub
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.1
    • /
    • pp.31-36
    • /
    • 1995
  • Solid dispersions and inclusion complex were prepared for the enhancement of solubility and dissolution rate of poorly water-soluble ibuprofen(IPF) as a model drug. Polyethylene glycol 4000(PEG4000) and polyvinylpyrrolidone(PVP) were used for the preparation of solid dispersion. $2-Hydroxypropyl-{\beta}-cyclodextrin(2-HP{\beta}CD)$ was also used for the preparation of inclusion complex. The solubility of IPF increased as the concentration of PEG4000, PVP and $2-HP{\beta}CD$ increased. Solubilization capacity of $2-HP{\beta}CD$ was increased about 10 times when compared to PEG 4000 and PVP. The dissolution rate of drug from solid dispersions and inclusion complex in the simulated gastric fluid was enhanced when compared to pure IPF and commercial $BR4^{\circledR}$ tablet as a result of improvement of solubility. In case of solid dispersions, dissolution rate of drug was proportional to polymer concentration in the formulation. The marked enhancement of dissolution rate of drug by inclusion complexation with $2-HP{\beta}CD$ was noted. However, dissolution rate of drug from solid dispersions and inclusion complex in the simulated intestinal fluid was not significant because IPF was readily soluble in that condition. From these findings, water-soluble polymers and cyclodextrin were useful to improve solubility and dissolution rate of poorly water-soluble drugs. However, easiness and reliability of preparation method, scale-up and cost of raw materials must be considered for the practical application of solid dispersion and inclusion complex in pharmaceutical industry.

  • PDF

Addition of an N-Terminal Poly-Glutamate Fusion Tag Improves Solubility and Production of Recombinant TAT-Cre Recombinase in Escherichia coli

  • Kim, A-Hyeon;Lee, Soohyun;Jeon, Suwon;Kim, Goon-Tae;Lee, Eun Jig;Kim, Daham;Kim, Younggyu;Park, Tae-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.109-117
    • /
    • 2020
  • Cre recombinase is widely used to manipulate DNA sequences for both in vitro and in vivo research. Attachment of a trans-activator of transcription (TAT) sequence to Cre allows TAT-Cre to penetrate the cell membrane, and the addition of a nuclear localization signal (NLS) helps the enzyme to translocate into the nucleus. Since the yield of recombinant TAT-Cre is limited by formation of inclusion bodies, we hypothesized that the positively charged arginine-rich TAT sequence causes the inclusion body formation, whereas its neutralization by the addition of a negatively charged sequence improves solubility of the protein. To prove this, we neutralized the positively charged TAT sequence by proximally attaching a negatively charged poly-glutamate (E12) sequence. We found that the E12 tag improved the solubility and yield of E12-TAT-NLS-Cre (E12-TAT-Cre) compared with those of TAT-NLS-Cre (TAT-Cre) when expressed in E. coli. Furthermore, the growth of cells expressing E12-TAT-Cre was increased compared with that of the cells expressing TAT-Cre. Efficacy of the purified TAT-Cre was confirmed by a recombination test on a floxed plasmid in a cell-free system and 293 FT cells. Taken together, our results suggest that attachment of the E12 sequence to TAT-Cre improves its solubility during expression in E. coli (possibly by neutralizing the ionic-charge effects of the TAT sequence) and consequently increases the yield. This method can be applied to the production of transducible proteins for research and therapeutic purposes.

Physicochemical Characterization and Dissolution Properties of CS-891 with Different Crystallinity

  • Lee, Woo-Young;Park, Byoung-Woo;Park, Yong-Sun
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.4
    • /
    • pp.279-285
    • /
    • 2005
  • Ground CS-891 (N-[1-(4-methoxyphenyl)-1-methylethyl]-3-oxo-4-aza-5a-androst-1-ene-$17{\beta}$-carboxamide) of poorly water soluble drug was obtained using a Heiko Seisakusho model TI-100 vibration mill, and samples with different crystallinity were prepared at mixture ratios of 10:0, 7:3, 5:5, 3:7 and 0:10 (intact;ground CS-891). Physicochemical characterizations were obtained using qualitative and quantitative X-ray diffractometry, different scanning calorimetry (DSC), scanning electron microscopy (SEM), Quantasorb surface area analyzer, and controlled atmosphere microbalance. With increase of amorphous CS-891 in mixture ratios, the intensities of X-ray diffraction peaks of crystalline CS-891 were decreased, whereas surface area, water absorption, and exothermic peaks in DSC were increased. The apparent solubility of ground CS-891 was $4.4\;{\mu}g/ml$ and the solubility of intact CS-891 was $3.1\;{\mu}g/ml$ at $37{\pm}1^{\circ}C$. The apparent precipitation rates of CS-891 in a supersaturated solution during the solubility test were increased with an increase of amorphous CS-891, and a crystalline form of CS-891 transformed from amorphous CS-891 after the solubility test was found by X-ray diffraction analysis, DSC and SEM. The dissolution profiles of CS-891 with different crystallinity at $37{\pm}1^{\circ}C$ by the USP paddle method were investigated, and the apparent dissolution rate constant of ground CS-891 was about 5.9-fold higher than that of intact CS-891. A linear relationships between the crystallinity of CS-891 and the apparent dissolution rate constant (r>0.96) were obtained.

Solubility and Physicochemical Stability of Caroverine Hydrochloride in Aqueous Solution (수용액중 염산카로베린의 용해성 및 안정성)

  • Gwak, Hye-Sun;Lee, Dong-Soo;Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.2
    • /
    • pp.121-126
    • /
    • 1998
  • The solubility and physicochemical stability of caroverine hydrochloride (CRV), an antispasmodic, in buffered aqueous solutions were studied using a reverse phase high performance liquid chromatography. The solubilty of the drug at pH 2.76-5.40 was similar at the range 31.9-36.2 mg/ml $(34^{circ}C)$, but, at the pH higher than 6.0, markedly decreased. The use of polyethylene glycol 400 as a cosolvent did not increase the solubility at any compositions examined. Moreover. increasing molar concentration of aqueous phosphate buffer from 0 to 0.5 M remarkably decreased the solubility. The degradation of CRY followed the apparent first-order kinetics. The degradation was accelerated with decreasing pH and increasing storage temperature. The half-lives for the degradation of CRY (1.0 mg/ml) at pH 1.28. 4.01 and 5.93 $(45^{\circ}C)$ were 2.8, 31.4 and 124 hr. respectively. The pHs of incubated solutions were to some extent lowered perhaps due to the formation of acidic degradation products. The addition of disodium edetate (0.01%) to the CRY solution (pH 4.95) retarded 2.5 times the degradation rate at $45^{\circ}C$, but the use of sodium bisulfite (0.1%) accelerated 2.9 times the rate. The activation energy for the CRY solution (20 mg/ml. pH 5.4) containing 0.01% EDTA was calculated to be 5.98 kcal/mole. When the solution was stored under nitrogen displacement in ampoule, there was no significant degradation even after 3 months at $40^{\circ}C$, indicating that protection from oxidation by air (oxygen) is essential for the complete stabilization of CRY solution.

  • PDF

Solubility and In vivo Absorption Enhancement of Diclofenac Sodium by ${\beta}-Cyclodextrin$ Complexation (${\beta}$-시클로덱스트린과의 포접에의한 디플로페낙나트륨의 용해도 및 생체흡수율 증가)

  • Lee, Kyung-Tae;Kim, Jong-Hwan;Kim, Joo-Il;Kim, Seung-Jo;Seo, Hee-Kyoung;Seo, Seong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.3
    • /
    • pp.169-174
    • /
    • 1996
  • Inclusion complexes of diclofenac sodium with ${\beta}-cyclodextrin$ were prepared in aqueous solution, alkaline solution and solid phase. The interaction of diclofenac sodium with ${\beta}-cyclodextrin$ in pH 9.0 alkaline solution was evaluated by the solubility method and the instrumental analysis such as thermal analysis, infrared spectroscopy, X-ray diffractometry. The solubility of diclofenac sodium was increased linearly with the increase in the concentration of ${\beta}-cyclodextrin$up to 0.15 mol and showed that the aqueous solubility rate of diclofenac sodium was significantly increased by complex with ${\beta}-cyclodextrin$. The optimum composition of this complex was one molecule of ${\beta}-cyclodextrin$ included 1.59 molecular weight of diclofenac sodium as a guest molecule. The pharmacokinetic parameters of the diclofenac sodium and the complex with ${\beta}-cyclodextrin$ were studied in rats by oral route. $T_{max}$ between drug alone and inclusion complex showed significant difference to be 120 minute and 20 minute respectively. Both of $C_{max}$ and AUC of inclusion complex was about 40% higher than drug alone. It is estimated from the data in this study that complexation of diclofenac sodium with ${\beta}-cyclodextrin$ increased the absorption rate and improved the bioavalability of the diclofenac sodium by the formation of a water-soluble complexes.

  • PDF

A Study of the Foaming Properties of Peanut Protein Isolate (분리 땅콩 단백질의 기포 특성에 관한 연구)

  • Park, Hyun-Kyung;Sohn, Kyung-Hee;Kim, Hyon-Jung
    • Korean journal of food and cookery science
    • /
    • v.6 no.3 s.12
    • /
    • pp.9-15
    • /
    • 1990
  • Peanut prptein isolate was tested for the purpose of finding out the effect of pH, Sodium Chloride concentration and heat treatment on the solubility, surface hydrophobicity, foam expansion and foam stability. The solubility of peanut protein isolate was affected by pH and showed the lowest value at pH 4.5. When the peanut protein isolate was heated, the solubility decreased at pH 3 and pH 7 but at pH 9 solubility increased. At all pH range, solubility decreased as NaCl was added. The surface hydrophobicity of peanut protein isolate showed the highest value at pH 1.5. Generally, at acidic pH range the surface hydrophobicity was high, but at alkaline region, the surface hydrophobicity increased as the temperature increased. And when NaCl was added, the surface hydrophobicity was also increased. Foam expansion of peanut protein isolate was no significant difference among the values about pH. When the peanut protein was heated and NaCl was added, foam expansion was increased at pH 7. Foam stability was significantly low at pH 4.5 and foam stability was increased at acidic pH region below pH 4.5. At pH 7 and pH 9, heat treatment above $60^{\circ}C$ increased foam stability. When NaCl was added, foam stability was significantly increased at pH 3 and pH 7.

  • PDF