• Title/Summary/Keyword: solids yield

Search Result 250, Processing Time 0.022 seconds

Analytical Study of H-Honeycomb Sandwich Core Structure Model based on Truss (트러스를 기반으로 형성된 H-벌집형 샌드위치 심재 모델의 해석적 연구)

  • Choi, Jeong-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.133-140
    • /
    • 2017
  • This paper is a study of the central structural unit model of the sandwich core structure. The applied model is based on the honeycomb structure formed by the truss, the H-shaped honeycomb structure formed by adding the truss of H shape to the space of the center portion, and the honeycomb structure formed by the plate. Applied material property is AISI 304 stainless steel, which has cost effectiveness and easy to get near place. The truss diameter of the model is three different type: 1mm, 2mm and 3mm. ABAQUS software is obtained to do the analysis and applied test is quasi-static loading. Boundary conditions for the analysis are that vertical direction loading at top place without any rotation and bottom surface is fixed. The test results show that the H-truss model has the highest stiffness and yield strength. Therefore, it is hoped that more and more researching for the development of a unit model in sandwich core structure has been investigating and that the developed sandwich core model can be applied into various industrial fields such as mechanical or aerospace industries.

Effect of seaweed addition on enhanced anaerobic digestion of food waste and sewage sludge

  • Shin, Sang-Ryong;Lee, Mo-Kwon;Im, Seongwon;Kim, Dong-Hoon
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.449-455
    • /
    • 2019
  • To investigate the effect of seaweed (SW) addition on anaerobic co-digestion of food waste (FW) and sewage sludge (SS), batch experiments were conducted at various substrate concentrations (2.5, 5.0, 7.5, and 10.0 g volatile solids (VS)/L) and mixing ratios ((FW or SS):SW = 100:0, 75:25, 50:50, 25:75, and 0:100 on a VS basis). The effect of SW addition on FW digestion was negligible at low substrate concentration, while it was substantial at high substrate concentrations by balancing the rate of acidogenesis and methanogenesis. At 10 g VS/L, $CH_4$ production yield was increased from 103 to $350mL\;CH_4/g$ VS by SW addition (FW:SW = 75:25). On the other hand, SW addition to SS enhanced the digestion performance at all substrate concentrations, by providing easily biodegradable organics, which promoted the hydrolysis of SS. $k_{hyd}$ (hydrolysis constant) value was increased from 0.19 to $0.28d^{-1}$ by SW addition. The calculation showed that the synergistic $CH_4$ production increment by co-digesting with SW accounted for up to 24% and 20% of total amount of $CH_4$ production in digesting FW and SS, respectively.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Efficient Bio-gasification Facility of Pig Manure and Food Waste(II): - Results of the Precision Monitoring - (가축분뇨 병합처리 바이오가스화를 위한 설계 및 운전 기술지침 마련 연구(II) - 정밀모니터링 결과 중심으로 -)

  • Lee, Dongjin;Moon, HeeSung;Son, Jihwan;Bae, Jisu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.91-98
    • /
    • 2017
  • The purpose of this study is to provide a design and operation technical guideline for meeting the appropriate design criteria to bio-gasification facilities treating organic wastes. 9 anaerobic digestion facilities which is normally operated during the field survey and 14 livestock manure farms were selected for precision investigation. the physicochemical analysis was performed on the moisture and organic contents, nutrients composition (carbohydrate, fat, protein), volatile fatty acids (VFAs), and nitrogen, etc. Volatile solids (VS) of organic wastes brought into the bio-gasification facilities were 2.81 % (animal manure only) and 5.92 % (animal manure+food waste), respectively. Total solids (TS) reults of samples from livestock farms were 5.6 % in piglets and 11~13 % in other kinds of breeding pigs. The actual methane yield based on nutrients contents was estimated to $0.36Sm^3CH_4/kgVS$ which is equivalent to 72 % of theoretical methane yield value. The optimum mixing ratio depending on the effect of the combined bio-gasification was obtained through the continuous stirred-tank reactor (CSTR) which is operated at different mixing ratio of swine manure and food waste leachate. The range of swine manure and food waste leachate from 60:40 to 40:60 were adequate to the appropriate conditions of anaerobic digestion; less than 100 gTS/, more than alkalinity of 1 gCaCO3/L, C/N ratio 12.0~30.0, etc.

Fruit Quality and Harvest Time of 'Heukboseok' Grape by Fruit Load (착과량에 따른 '흑보석' 포도의 과실 품질 및 수확기)

  • Jung, MyungHee;Kwon, YongHee;Lee, ByulHaNa;Park, YoSup;Park, Hee-Seung
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.289-295
    • /
    • 2014
  • This research was conducted to investigate a difference in quality according to control of fruit load and cluster weight when seeded 'Heukboseok' grape was grown in a conventional cultivation system. Clusters per vine were set to harvest 1,500 kg, 1,800 kg, and 2,200 kg grapes per $990m^2$. In p lots t reated t o produce 1,800 kg grapes, clusters were set to 3 grades produce grapes with 350 g, 500 g, and 700 g in cluster weight. Based on color chart (National Institute of Horticultural & Herbal Science, Rural Development Admnistration) which show maturation stage for 'Kyoho' grape, grapes with higher than grade 9 were harvested at 80 and 90 days after full bloom, and the r est of them were harvested a t 100 days after full bloom. The final yield of 'Heukboseok' grape was the lowest in target yield of 1,800 kg with 700 g clusters with 75.5% of target yield, but 92.1%-100.1% of target yield were harvested in other treatments. Among treatments with several fruit setting, 83.3% of grapes harvested in treatment to produce 1,500 kg grapes as a target yield at 90 days after full bloom. Among the treatments with different cluster weights, 93.5% grapes were harvested in the treatment with 350 g in cluster weight. 'Heukboseok' grape showed rapid maturation pattern with no significant difference in either soluble solids content or acidity between 90 days from 80 days after full bloom. Therefore, to prevent flesh softening, it is appropriate to harvest fruit at 90 days after full blooms, and both yield and cluster weight were important factors influencing the quality of the fruits in 'Heukboseok' grape. It is confirmed that coloring and firmness was influenced by the final yield and weight per cluster, respectively. Therefore, the yield should be set as grape of 1,500 kg per $990m^2$ in target yield, and cluster weight should be adjusted to 350 g to produce grape of 1,800 kg with the fruits of high quality. It is considered to be hard to produce grape of high quality with 700 g in cluster weight in 'Heukboseok' grape.

Use of extraction solvent method to monitor the concentrations of acidic polysaccharides and ginsenosides from red and black ginseng (추출용매에 따른 홍삼 및 흑삼의 산성다당체와 진세노사이드 함량 모니터링)

  • Gee Dong Lee
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.857-867
    • /
    • 2023
  • In this study, the extraction yield, acidic polysaccharides and ginsenosides of red and black ginseng were optimized by using the response surface methodology in consideration of the ethanol concentration and temperature of the extraction. The R2 of the model formula for the yield, acidic polysaccharides and ginsenosides was 0.8378-0.9679 (p<0.1). An optimal extraction yield of 5.29% was reached for red ginseng soluble solids when 1.52% ethanol concentration was used at a temperature of 67.27℃. Additionally, the optimal extraction yield for black ginseng soluble solid was 6.11% when 3.12% ethanol concentration was used at a temperature of 66.13℃. Furthermore, the optimal conditions for extracting acidic polysaccharides from red ginseng were using an ethanol concentration of 4.03% at a temperature of 69.61℃; a yield of 1.86 mg/mL was obtained. The optimal extraction yield for acidic polysaccharides from black ginseng was 1.80 mg/mL when extracted using a concentration of 24.67% of ethanol at a temperature of 71.14℃. An optimal extraction yield of 0.22 mg/mL was reached for ginsenoside Rg1 from red ginseng when 79.92% ethanol concentration was used at a temperature of 70.62℃. The optimal extraction yield of ginsenoside Rg3 from black ginseng was 0.31 mg/mL when ethanol was used at a concentration of 75.70% at a temperature of 65.49℃. The ideal extraction conditions for obtaining the maximum yield of both acidic polysaccharide and ginsenoside from red and black ginseng were using ethanol at a concentration between 35 and 50% at an extraction temperature of 70℃.

Soil EC and Yield and Quality of Oriental Melon (Cucumis melo L. var. makuwa Mak.) as affected by Fertigation (참외의 관비재배가 토양 EC, 참외의 수량 및 품질에 미치는 영향)

  • Jun, Ha Joon;Shin, Yong Seup;Suh, Jun Kyu
    • Journal of Bio-Environment Control
    • /
    • v.21 no.3
    • /
    • pp.186-191
    • /
    • 2012
  • Experiments were conducted to investigate the effect of fertigation (fertilizer-added irrigation) on soil EC (electrical conductivity), nitrogen and calcium content in soil, vine growth and fruit yield of oriental melon (Cucumis melo L. var. makuwa Mak.). Soil EC was increased with the frequency of fertigation (Yamazaki's solution for melon, 900 L/1,000 plants, each time) up to $0.8dS{\cdot}m^{-1}$ as compared to that of conventional irrigation ($0.2dS{\cdot}m^{-1}$). Ca content in soil also increased in fertigation fields. Vine dry weigh (20 days after planting) was significantly increased in fertigation plot. Markedly increases in marketable fruit yield and lower rate of off-shape fruit were recorded with the increase in fertigation frequency. Mean fruit weight and soluble solids contents ($^0Brix$) in fruit were not affected by fertigation. Fresh weight loss during storage was significantly higher in fruits harvested from 2 times fertigation (09:00 and 18:00) plot than conventional irrigation and the 1 time fertigation ones.

Effect of organic concentration on its degradation kinetics in a burial site (매몰지 내 유기물 농도가 분해 속도에 미치는 영향)

  • Lee, Chae-Young;Choi, Jae-Min;Oh, Seung-Jun;Han, Sun-Kee;Park, Joon-Kyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.1
    • /
    • pp.62-68
    • /
    • 2013
  • The effect of organic substance on its degradation rate in burial site was investigated using batch tests. Substrate were swine and cattle with the initial concentrations of 2, 4, 6, 8, and 10 g VS(volatile solids)/L, respectively. The highest methane production rates of swine and cattle were found at 2 g VS/L as 46.3 and 48.4 ml CH4/g VS.d, respectively. As substrate concentration increased, the methane production rate decreased. The inhibition constants were n and m that were estimated using nonlinear inhibition model. The values of n and m were inhibition constants of methane production rate and ultimate methane yield, respectively. The values of n and m were 4.9 and 0.6 on swine and 1.1 and 0.4 on cattle. The methane production rate was responded sensitively by increase and decrease of substrate concentration, whereas ultimate methane yield do not relatively. From a relation between n and m, inhibitory effect of substrate concentration was confirmed as uncompetitive inhibition.

Investigation of the Optimum Operational Condition of Bio-Hydrogen Production from Waste Activated Sludge (폐활성 슬러지로부터 생물학적 수소 생산을 위한 최적 조건 연구)

  • Kim, Dong-Kun;Lee, Yun-Jie;Yu, Myong-Jin;Pak, Dae-Won;Kim, Mi-Sun;Sang, Byoung-In
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.362-367
    • /
    • 2006
  • Waste activated sludge(WAS) collected from domestic wastewater treatment plant is biomass that contains large quantities of organic matter. However, relevant literature show that the bio-hydrogen yield using WAS was too low. In this study, the effect of pretreatment of WAS on hydrogen yield was investigated. Pretreatment includes acid and alkali treatments, grinding, heating, ozone and ultrasound methods. After pretreatment organic matters of WAS were solubilized and soluble chemical oxygen demand(SCOD) was increased by 14.6 times. Batch experiments were conducted to investigate the effects of pre-treatment methods and buffer solution, hydrogen partial pressure, and sodium ion on hydrogen production from WAS by using heated anaerobic mixed cultures. Experimental results showed that addition of buffer solution, efficient pre-treatment method with alkali solution, and gas sparging condition markedly increased the hydrogen yield to 0.52 mmol $H_2/g$-DS.

Enfluence of the Number of the Lower Scaffold Limbs in Slender Spindle Form on the Tree Growth and Development of 'Fuji' Apple Trees ('후지' 사과나무 세장방추형에서 하단측지수가 수체생육에 미치는 영향)

  • Park, Moo-Yong;Yang, Sang-Jin;Park, Jeung-Kwan;Choi, Dong-Geun;Kang, In-Kyu
    • Journal of Bio-Environment Control
    • /
    • v.16 no.3
    • /
    • pp.258-263
    • /
    • 2007
  • This study was carried out to investigate the effects of number of the lower scaffold limbs on tree growth, light penetration, fruit yield, and fruit quality in slender spindle in 6-year-old 'Fuji'/M.9 apple trees. With regard to the growth by the numbers of the lower scaffold limbs, the width of the tree was wide and the growth of new shoots was increased when the number of the lower scaffold limbs was five. Compare with other treatments, five lower scaffold limbs showed high light-interception on the upper (150 cm above the ground) and middle (100 cm above the ground) canopy. There was no difference in the total number of the flower buds of the spurs according to the number of scaffold limbs, but the number and cross section area of flower bud on the lower canopy (120 cm above the ground) were increased where the number of the lower scaffold limbs was five. Fruit yield was highest in the treated with five lower scaffold limbs and fruit weight tended to increase where the number of the lower scaffold limbs was five or eight. With regard to fruit quality, there showed no difference in fruit shape index, firmness, acid content, Hunter L and b value according to the location of canopy and the number of the lower scaffold limbs, but the content of soluble solids was highest treated with five lower scaffold limbs. Hunter a value indicating fruit color was found to be highest treated with five lower scaffold limbs whose light interception was highest.

Effect of Heat Conservation of Greenhouse Film on Growth and Quality in Oriental Melon (필름두께 및 적외선 흡수율 차이가 참외의 품질 및 수량에 미치는 영향)

  • Shin, Yong-Seub;Yeon, Il-Kweon;Do, Han-Woo;Lee, Ji-Eun;Cheung, Jong-Do;Kang, Chan-Ku;Choi, Chung-Don;Chun, Hee;Choi, Young-Ha;Chung, Doo-Seok
    • Journal of Bio-Environment Control
    • /
    • v.16 no.3
    • /
    • pp.167-173
    • /
    • 2007
  • This study was conducted to improve light environment of oriental melon cultivation in winter season. Three polyolefin foreign films (J-1, J-2, J-3) and three polyethylene domestic films (K-1, K-2, K-3) with different film thickness, ultraviolet ray interception and infrared ray absorption were used. As the result of this experiment, soluble solid of oriental melon fruit in K-3 was $14.3^{\circ}Brix$, those in J-3 and J-2 were higher by 1.3 and $0.8^{\circ}Brix$, respectively. Chromaticity (a value) of pericarp in K-3 was 0.5, those in J-3, J-1 and J-2 were higher by 3.3, 2.3 and 1.9, respectively. Especially, fermented and malformed fruit rates in J-1, J-2 and J-3 were decreased and marketable fruit rates were increased. Marketable yield in K-3 was 1,622 kg per 10a, those in J-1, J-3 and J-2 were increased by 31.2%, 23.8% and 18.5% compare to K-3, respectively. In this study, Polyolefin films (J-1, J-2, J-3) with thickness and infrared ray absorption ratio keeping higher heat conservation, therefore, soluble solid and chromaticity of fruit were increased, fermented fruit rate was decreased, and marketable fruit rate and yield were increased.