• Title/Summary/Keyword: solidification cracking

Search Result 68, Processing Time 0.022 seconds

Effect of the Mg Content on the Solidification Cracking Susceptibility of the Al-Mg Alloy Laser Welds

  • Yoon, J.W.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.63-70
    • /
    • 2001
  • The solidification cracking susceptibilities of Al-Mg alloy laser welds were assessed using self-restraint tapered specimen crack test. The dependence of cracking susceptibility of Al-Mg alloy laser welds on Mg contents was observed to be similar to that of arc welds in the same materials. The cracking susceptibility of Al-Mg alloy laser welds increased as Mg content increased up to 1.6-1.9 wt.% and then it decreased as Mg content increased further. The peak cracking susceptibility occurred at around 1.6 to 1.9 wt.% Mg for both autogenous and wire feed welds. It was also observed that the cracking susceptibility decreased as the grain size of Al-Mg alloy laser welds decreased, when Mg content was in the range higher than 1.9 wt.%.

  • PDF

Weldability Analysis by the Self Restraint Test (Self Restraint 시험법을 이용한 용접성 평가)

  • 김환태
    • Proceedings of the KWS Conference
    • /
    • 1995.04a
    • /
    • pp.65-67
    • /
    • 1995
  • The solidification crack susceptifility of aluminum alloy weld metal have been evaluated by means of the slef restraint and external restraint cracking test. It has been observed expermently as follows : (1) The manganese is beneficial to decrease the solidification cracking susceptibility. (2) Weld metal containing zirconium is less sensitive to the solidification cracking than the weld metal containing chromium does. (3) The self restraint test method shows the same tendency in results as the external restraint test does.

  • PDF

Solidification Cracking in Welds and its Control (용접부 응고균열 발생 및 제어)

  • Yoon, Jong-Won
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.22-22
    • /
    • 2010
  • Eutectic composition phase with low melting point which solidifies at the final stage affects the solidification cracking at the intercellular or interdendritic area of welds and castings. If sufficient amount of eutectic composition liquid does not exist between the solidifying phases, the discontinuities remain as cracks. However, abundant amount of liquid eutectic composition existing in the final stage can flow into the discontinuities easily and heal the cracks. By flowing of liquid eutectic and healing of discontinuities, the possibility of cracking can be reduced when the amount of eutectic liquid is sufficient. For the solidification of pure metals, liquid eutectic does not exist and the interlocking of growing solid phases can be realized without interruption of liquid film. Therefore there is little possibility of solidification cracking in the case of welds and castings of pure metal. In a practical sense, the effective way to reduce or prevent the solidification cracking is making the composition of molten pool or melts near to the eutectic composition.

  • PDF

Hot Cracking Behavior in Inconel 690 Overlay Welds on Mn-Ni-Cr-Mo Steel for Pressure Vessels (Mn-Ni-Cr-Mo강에 대한 Inconel 690 오버레이 용접부에서의 고온균열의 발생거동)

  • 양병일;김정태;신용범;안용식;박화순
    • Journal of Welding and Joining
    • /
    • v.20 no.2
    • /
    • pp.82-89
    • /
    • 2002
  • In order to clarify hot cracking phenomena occurred in Inconel 690 welds and it's prevention, in this study, the cracking behavior and the influence of welding variables on cracking in Inconel 690 overlay welds on Mn-Ni-Cr-Mo steel(SA 508 cl.3) for pressure vessel were investigated by using mock-up test. The main results are as follows: The cracks in Inconel 690 overlay welds were mainly generated near the start and the end part of welding beads adjacent to STS 309L welded outside of Inconel 690 welds. Most of the cracks showed typical solidification crack, and also it was assumed that there was possibility of liquation cracking in HAZ. The existence of Nb constituents or concentration of Nb was recognized on the fracture facets of the solidification cracks in the welds by SMAW. Therefore Nb was considered to be the main factor of the solidification cracking. As the weld heat input was more increased and the weld bead length was longer, the extent of cracking was more increased. Moreover the extent of cracking was considerably decreased by changing of welding sequence to the start and the end part of welds. Hot cracking in welds by GTAW was considerably decreased as compared with that of SMAW. And cracks were well generated in the Inconel 690 overlay welds adjacent to 575 309L welds. This means that the hot cracking susceptibility of Inconel 690 welds was largely varied by chemical components and/or compositions of filter metals, base metals and neighboring welds.

Hot Cracking Susceptibility in Welds of High Strength Al Alloys by Using DCSP-GTAW (DCSP-GTAW에 의한 고력 Al합금의 고온균열감수성에 대한 연구)

  • Ha Ryeo-Sun;Jung Byong-Ho;Park Hwa-Soon
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.65-72
    • /
    • 2004
  • The tendency and degree of hot cracking of high strength 5083, 6N01 and 7N01 Al alloy welds by using DCSP-GTAW through modified Varestraint test and autogenous butt welding were investigated. In hot cracking test, 6N01 alloy showed the highest susceptibility to hot cracking in the weld metal and HAZ. Cracking susceptibilities generally increased with increase of solidification temperature range of the base metal and bead penetration-to-width ratio of the weld metal. The cracks in welds of the alloys vertically formed to solid-liquid interface and propagated along with columnar grain boundaries. The fracture facets of cracks showed the typical morphology of solidification crack observed as dendritic structures. Especially, in 6N01 alloy, liquation cracks which were due to elements of Si, Fe and Mg also observed in HAZ near fusion boundary. In butt welding of different Al alloys, the bead crack was mainly occurred in the welds of 6N01, 7N01 and other Al alloys together with 6N01 or 7N01. In the butt welds of 7N01, it was found that the component of Cu had an effect on the higher susceptibility to the hot cracking.

Influence of Metallic Sodium on Repair Weldability for Type 316FR Stainless Steel

  • Chun, Eun-Joon;Lee, Su-Jin;Suh, Jeong;Lee, Ju-Seung;Kang, Namhyun;Saida, Kazuyoshi
    • Journal of Welding and Joining
    • /
    • v.35 no.1
    • /
    • pp.79-88
    • /
    • 2017
  • The effect of residual metallic sodium on the solidification cracking susceptibility of type 316FR stainless steel was investigated via transverse-Varestraint tests. And a solidification brittle temperature range (BTR) of type 316FR stainless steel was 37 K. However, the BTR expanded from 37 to 67 K, as the amount of metallic sodium at the specimen surface increased from 0 to $7.99mg/cm^2$. Microstructural observation of the weld metal suggested that metallic sodium existed in the weld metal, including in the cell boundaries, during welding solidification. Thermodynamic calculations suggested that sodium expanded the temperature range of solidliquid coexistence during welding solidification of the steel weld metal. Therefore, the increased solidification cracking susceptibility (i.e., expansion of the BTR) in the residual sodium environment was attributed to enhanced segregation of sodium during the welding solidification; this segregation, in turn, resulted in an expanded temperature range of solid-liquid coexistence.

Solidification Cracking Behavior in Austenitic Stainless Steel Laser Welds (Part 2) -Effects of δ-ferrite Crystallization and Solidification Segregation Behavior on Solidification Cracking Susceptibility- (오스테나이트계 스테인리스강 레이저 용접부의 응고균열 거동 (Part 2) - δ 페라이트 정출 및 응고편석 거동에 따른 응고균열 민감도 변화 -)

  • Chun, Eun-Joon;Lee, Su-Jin;Suh, Jeong;Kang, Namhyun;Saida, Kazuyoshi
    • Journal of Welding and Joining
    • /
    • v.34 no.5
    • /
    • pp.61-69
    • /
    • 2016
  • A numerical simulation of the solid/liquid coexistence temperature range, using solidification segregation model linked with the Kurz-Giovanola-Trivedi model, explained the mechanism of the BTR shrinkage (with an increase in welding speed) in type 310 stainless steel welds by reduction of the solid/liquid coexistence temperature range of the weld metal due to the inhibited solidification segregation of solute elements and promoted dendrite tip supercooling attributed to rapid solidification of laser beam welding. The reason why the BTR enlarged in type 316 series stainless welds could be clarified by the enhanced solidification segregation of impurity elements (S and P), corresponding to the decrement in ${\delta}-ferrite$ crystallization amount at the solidification completion stage in the laser welds. Furthermore, the greater increase in BTR with type 316-B steel was determined to be due to a larger decrease in ${\delta}-ferrite$ amount during welding solidification than with type 316-A steel. This, in turn, greatly increases the segregation of impurities, which is responsible for the greater temperature range of solid/liquid coexistence when using type 316-B steel.

Weldability of Al Alloys,Part I ;Cfacking and Porosity (알루미늄 합금의 용접특성 - part I : 균열 및 기공)

  • 이창희;장래웅
    • Journal of Welding and Joining
    • /
    • v.10 no.3
    • /
    • pp.1-12
    • /
    • 1992
  • A literature review was conducted to survey informations available on the welding metallurgy of aluminum alloys and its effect on fusion weldability, especially on solidification cracking and pore formation. Solidification cracking behavior of Al weld is a complicate matter as compared to other high alloys, where a relatively simple Fe-X(most detrimental elements S, P, B, Si, etc) binary diagram can be successfully applicable. Both additive and synergistic effects of elements should be considered together. A same element play a different role from system to system. Porosity, caused by hydrogen contamination of the weld is one of the most troublesome welding problems. The primary sources of hydrogen are believed to be an absorbed moisture on the filler metal or base metal and in the shielding gas. It is extremely important that reliable quality-control procedures be employed to eliminate all possible sources of hydrogen contamination. Selection of proper process and parameters is sometimes more important than controlling of alloying elements in order to make a defect-free weld.

  • PDF

( Control of Primary Solidification Mode for Improving Solidification Cracking Resistance , Corrosion Resistance and Cryogenic Toughness of Austenitic Stainless Steel (오스테나이트계 스테인리스강의 응고균열저항 내식성 및 극저온 초성 향상을 위한 초정응고 형식의 제어)

  • 정호신
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.2
    • /
    • pp.208-215
    • /
    • 1992
  • Concept of primary solidification mode control was adopted to obtain optimal solidification crack resistance, hot ductility, corrosion resistance and toughness for austenitic stainless steel. By controlling primary solidification phase as primary $\delta$ and containing no ferrite at room temperature, optimal solidification crack resistance, hot ductility, corrosion resistance and cryogenic toughness could be obtained. The optimum chemical composition of austenitic stainless steel ranges 1.46~1.55(Creq/Nieq ratio) calculated by Schaeffler's equation.

  • PDF

Effect of Laser Pulse Shaping on Reduction in Defects of Stainless Steel Sport Weld Metals (스텐레스 강 용접부에 형성되는 결함의 저감에 미치는 레이저 펄스 파형의 영향)

  • 김종도;카따야마세이지
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.3 no.2
    • /
    • pp.13-21
    • /
    • 1997
  • This paper describes the effectiveness of laser pulse shaping in eliminating weld defects such as porosity, cracks and undercuts in pulsed Nd:YAG Laser welding. A large porosity was formed in a keyhole mode of deep penetration weld metal of any stainless steel. Solidification cracks were present in Type 303 with about 0.3%s. The conditions for the formation of porosity were determined in further detail in Type 316. With the objectives of obtaining a fundamental knowledge of formation and prevention of weld defects, the fusion and solidification behavior of a molten puddle was observed during laser spot welding of Type 310S. through high speed video photographing technique. It was deduced that cellular dendrite tips grew rapidly from the bottom to the surface, and consequently residual liquid remained at the grain boundaries in wide regions and enhanced the solidification cracking susceptibility. Several laser pulse shapes were investigated and optimum pulse shapes were proposed for the reduction and prevention of porosity and solidification cracking.

  • PDF