• Title/Summary/Keyword: solid-phase extraction

Search Result 537, Processing Time 0.022 seconds

Characterization of Adsorbents for the Solid-Phase Extraction of Trace Ibuprofen from Biological Samples (생체시료로부터 미량 이부푸로펜의 고상추출에 사용될 흡착제들의 특성)

  • Kim, Kyoung-Rae;Shim, Weon-Hee
    • YAKHAK HOEJI
    • /
    • v.36 no.6
    • /
    • pp.563-569
    • /
    • 1992
  • The sorption and desorption properties of four different solid adsorbents were evaluated for the trace enrichment of ibuprofen from biological samples. Chromosorb 107 gave the highest dynamic adsorption coefficient. Among the organic solvents examined, acetone gave the highest desorption coefficient. Using the Chromosorb 107 column, the optimum elution volume of the eluting solvent was evaluated from the breakthrough curve of ibuprofen. The usefulness of Chromosorb 107 as the solid adsorbent and acetone as the eluting solvent was examined for the solid-phase extraction of ibuprofen from serum in the concentration range of $20{\sim}40\;{\mu}g/ml$.

  • PDF

Characterization of Adsorbents for the Solid-Phase Extraction of Trace Diphenylhydantoin from Biological Samples (생체시료로 부터 미량 디페닐히단토인의 고상추출에 사용될 흡착제의 특성)

  • Kim, Kyoung-Rae;Lee, Kyoung-Won;Shim, Weon-Hee
    • YAKHAK HOEJI
    • /
    • v.36 no.2
    • /
    • pp.120-125
    • /
    • 1992
  • Ths sorption and desorption properties of four different solid adsorbents were evaluated for the trace enrichment of diphenylhydantoin from biological samples. Graphitized carbon black(GCB) gave the highest adsorption coefficient. And among the organic solvents examined, methanol gave the highest desorption coefficient. Using the GCB column, the optimum elution volume of the eluting solvent was evaluated from the breakthrough curve of diphenylhydantoin. The usefulness of GCB as the solid adsorbent was examined for the solid-phase extraction of diphenylhydantoin from serum in the concentration range of $20-50\;{\mu}g/ml$.

  • PDF

Application of Reversed-Phase Solid Phase Extraction for the HPLC Analysis of Microcystins in Water (다량 시료중 마이크로시스틴의 농축 및 분석)

  • Kim, Myeong-Hee;Kim, Tae-Seung;Kim, Tae-Keun;Park, Sun Ku
    • Analytical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.399-402
    • /
    • 2000
  • To determine the concentrations of microcystins present in lake water or in tap water using high performance liquid chromatography, it is necessary to concentrate a large volume of water samples (about 20 L) into very small volume (0.1-0.3 mL). Concentration can be conveniently done when disc type solid phase extraction (SPE) apparatus is used. Using this apparatus we have investigated the recovery rates of three kinds of microcystins, RR, YR, LR. The recovery rates were relatively low and the reproducibilities were not good either. It is expected, however, that the appropriate selection of the disc conditioning and eluting solvents and reproducible reconcentration process after SPE will improve both the recovery rates and the reproducibilities.

  • PDF

Separation of Caffeine and Catechin Compounds from Green Tea by Quercetin Molecular Imprinted Solid-Phase Extraction (케르세틴 분자각인 고정상 추출을 이용한 녹차에서 카페인 및 카테킨 화합물의 분리)

  • Jin, Yin-Zhe;Row, Kyung-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.2
    • /
    • pp.165-170
    • /
    • 2007
  • In this work, caffeine and some catechin compounds such as +C, EGC and EGCG were extracted from green tea using quercetin molecular imprinted polymers in solid-phase extraction. For synthesis of MIP, quercetin as the templates, MAA as the monomer, EGDMA as the crosslinker and AIBN as the initiator were used. For extraction of caffeine and catechin compounds from green tea, the solid-phase extractions of a load followed by wash and elution procedures were done with water, methanol and methanol:acetic acid=90:10 (vol.%) as the solvents, respectively. HPLC analysis (C18 column, 5 μm, 250×4.6 mm) with the mobile phase of methanol:water=40:60 (vol.%) at a flow rate of 0.5 ml/min was adopted for the quantitative determination. By solid-phase extraction, the resolutions of caffeine and some catechin compounds from green tea were increased. The quercetin-MIP had higher selectivity to +C compounds.

A Study on Analytical Method of Phthalate Esters in Water by SPE(Solid-Phase-Extraction) (고체상 추출법을 이용한 Phthalate Esters의 분석방법 연구)

  • 홍성희;한개희;이찬형;이순화
    • Journal of Environmental Science International
    • /
    • v.12 no.1
    • /
    • pp.81-86
    • /
    • 2003
  • The study was carried out to evaluate the new analytical method of phthalate esters(diethylphthalate, di-n-butylphthalate, butylbenzylphthalate, bis(2-ethylhexyl)phthalate), one of the endocrine disruptors, which were performed by GC/MS-SIM(selected ion monitoring). The phthalate esters were extracted from water samples using solid-phase extraction on $C_{18}$ columns. It investigated that the extraction recovery rate of phthalate esters with different solvents and solvent volume. The optimal solvent was dichloromethane and proper volume of dichloromethane for recovery of phthalate esters was 4 mL. There were good linearities(above $R^2$=0.9975) in the range 0.01~0.50mg/L, and the detection limits were below 0.01~0.03$\mu\textrm{g}$/L. The recovery rates, RSD and MDLs for phthalate esters were 80~114%, 5.0~8.1% and 0.03~0.11$\mu\textrm{g}$/L, respectively. This method shows a good precision of phthalate esters.

On-Channel Micro-Solid Phase Extraction Bed Based on 1-Dodecanethiol Self-Assembly on Gold-Deposited Colloidal Silica Packing on a Capillary Electrochromatographic Microchip

  • Park, Jongman;Kim, Shinseon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.45-50
    • /
    • 2014
  • A fully packed capillary electrochromatographic (CEC) microchip with an on-column micro-solid phase extraction (SPE) bed for the preconcentration and separation of organic analytes was prepared. A linear microchannel with monodisperse colloidal silica packing was formed on a cyclic olefinic copolymer microchip with two reservoirs on both ends. Silver-cemented silica packing frit structure was formed at the entrance of the microchannel by electroless plating treatment as a base layer. A gold coating was formed on it by reducing $Au^{3+}$ to gold with hydroxylamine. Finally micro-SPE bed was formed by self-assembly adsorption of 1-dodecanethiol on it. Micro-SPE beds were about 100-150 ${\mu}m$ long. Approximately $10^3$ fold sensitivity enhancements for Sulforhodamine B, and Fluorescein in nM concentration levels were possible with 80 s preconcentration. Basic extraction characteristics were studied.

Study on Solid Phase Extraction and Spectrophotometric Determination of Nickel in Waters and Biological Samples

  • Hu, Qiu-Fen;Yang, Guan-Gyu;Huang, Zhang-Jie;Yin, Jia-Yuan
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.545-548
    • /
    • 2004
  • A sensitive, selective and rapid method for the determination of nickel based on the rapid reaction of nickel(II) with QADMAA and the solid phase extraction of the Ni(II)-QADMAA chelate with $C_{18}$ membrane disks has been developed. In the presence of pH 6.0 buffer solution and sodium dodecyl sulfonate (SDS) medium, QADMAA reacts with nickel to form a violet complex of a molar ratio of 1 : 2 (nickel to QADMAA). This chelate was enriched by solid phase extraction with $C_{18}$ membrane disks. An enrichment factor of 50 was obtained by elution of the chelates form the disks with the minimal amount of isopentyl alcohol. The molar absorptivity of the chelate was $1.32{\times}10^5L\;mol^{-1}cm^{- 1}$ at 590 nm in the measured solution. Beer's law was obeyed in the range of 0.01-0.6 ${\mu}$g/mL. This method was applied to the determination of nickel in water and biological samples with good results.

Study on the Solid Phase Extraction of Hg(II)-SBDTR Chelate with C18 Disks and Its Application to the Determination of Mercury in Tobacco and Tobacco Additive

  • Yang, Guan-Gyu;Xia, Zhen-Yuang;Wu, Yu-Ping;Sun, Han-Dong;Yin, Jia-Yuan
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.549-552
    • /
    • 2004
  • A sensitive, selective and rapid method has been developed for the determination of mercury based on the rapid reaction of mercury(II) with p-sulfobenzylidenethiorhodanine (SBDTR) and the solid phase extraction of the colored chelate with $C_{18}$ disks. In the presence of pH 3.5 sodium acetate-acetic acid buffer solution and Emulsifier-OP medium, SBDTR reacts with mercury(II) to form a red chelate of a molar ratio 1 : 2 (mercury to SBDTR). This chelate was prconcentrated by solid phase extraction with $C_{18}$ disks. An enrichment factor of 50 was achieved. The molar absorptivity of the chelate is $1.28{\times}10^5 L{\cdot}mol^{-1}{\cdot}cm^{-1}$ at 545 nm in measured solution. Beer's law is obeyed in the range of 0.01-3 ${\mu}$g/mL. The relative standard deviation for eleven replicates sample of 0.01 ${\mu}$g/mL is 1.65%. This method was applied to the determination of mercury in tobacco and tobacco additive with good results.

Study on Solid Phase Extraction and Spectrophotometric Determination of Vanadium with 2-(2-Quinolylazo)-5-Diethylaminophenol

  • Hu, Qiu-Fen;Yang, Guan-Gyu;Huang, Zhang-Jie;Yin, Jia-Yuan
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.263-266
    • /
    • 2004
  • A sensitive, selective and rapid method has been developed for the determination ${\mu}$g/L level of vanadium ion based on the rapid reaction of vanadium(V) with 2-(2-quinolylazo)-5-diethylaminophenol (QADEAP) and the solid phase extraction of the colored chelate with $C_{18}$ cartridge. The QADEAP reacts with V(V) in the presence of citric acid-sodium hydroxide buffer solution (pH = 3.5) and cetyl trimethylammonium bromide (CTMAB) medium to form a violet chelate of a molar ratio 1 : 2 (V(V) to QADEAP). This chelate was enriched by solid phase extraction with $C_{18}$cartridge and the enrichment factor of 50 was obtained by elution of the chelates from the cartridge with ethanol. The molar absorptivity of the chelate is $1.28 {\times}10^5L\;mol^{-1}cm^{-1}$ at 590 nm in the measured solution. Beer's law is obeyed in the range of 0.01-0.6 ${\mu}$g/mL. The detection limit is 0.04 ${\mu}$g/L in the original samples. This method was applied to the determination of vanadium(V) in water and biological samples with good results.