• Title/Summary/Keyword: solid state telescope

Search Result 12, Processing Time 0.024 seconds

Conceptual Design of a Solid State Telescope for Small scale magNetospheric Ionospheric Plasma Experiments

  • Sohn, Jongdae;Lee, Jaejin;Jo, Gyeongbok;Lee, Jongkil;Hwang, Junga;Park, Jaeheung;Kwak, Young-Sil;Park, Won-Kee;Nam, Uk-Won;Dokgo, Kyunghwan
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.195-200
    • /
    • 2018
  • The present paper describes the design of a Solid State Telescope (SST) on board the Korea Astronomy and Space Science Institute satellite-1 (KASISat-1) consisting of four [TBD] nanosatellites. The SST will measure these radiation belt electrons from a low-Earth polar orbit satellite to study mechanisms related to the spatial resolution of electron precipitation, such as electron microbursts, and those related to the measurement of energy dispersion with a high temporal resolution in the sub-auroral regions. We performed a simulation to determine the sensor design of the SST using GEometry ANd Tracking 4 (GEANT4) simulations and the Bethe formula. The simulation was performed in the range of 100 ~ 400 keV considering that the electron, which is to be detected in the space environment. The SST is based on a silicon barrier detector and consists of two telescopes mounted on a satellite to observe the electrons moving along the geomagnetic field (pitch angle $0^{\circ}$) and the quasi-trapped electrons (pitch angle $90^{\circ}$) during observations. We determined the telescope design of the SST in view of previous measurements and the geometrical factor in the cylindrical geometry of Sullivan (1971). With a high spectral resolution of 16 channels over the 100 keV ~ 400 keV energy range, together with the pitch angle information, the designed SST will answer questions regarding the occurrence of microbursts and the interaction with energetic particles. The KASISat-1 is expected to be launched in the latter half of 2020.

Solid State Telescope on KAISTSAT-4

  • Y.H. Shin;Lee, J.J.;J.A. Hwang;M.P. McCarthy;Park, G.K. s
    • Bulletin of the Korean Space Science Society
    • /
    • 2000.04a
    • /
    • pp.39-39
    • /
    • 2000
  • No Abstract, See Full Text

  • PDF

A BINARY OBSERVING PROJECT ON THE NCUO SPECKLE INTERFEROMETER

  • TSAY WEAN-SHUN;KUO HUI-JEAN;CHAN PEI-CHING
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.409-410
    • /
    • 1996
  • Speckle Interferometer equipped with an ITT intensified CCD have been used on the NCUO ( National Central University Observatory, Taiwan) 24-inch telescope for studying the orbits of bright binary systems selected from the Yale's Bright Star Catalogue. The high resolution and high sensitivity ITT intensified solid state video camera ( F4577 ) has external gain and gate control functions which will simplify the design of the speckle camera and allow us to do precise speckle photometry. The goal of this project is trying to study the bright binary systems with separations between the average size of seeing disk and the diffraction limit of the 24-inch telescope. Recently some observing data have been reduced and compared with the other teams' results. We are now improving the data reduction technology and trying to use real time observing mode on the monthly routine observation.

  • PDF

SPACE PHYSICS PACKAGE ON KAISTSAT-4 (과학위성 1호의 우주 플라즈마 관측 시스템)

  • HWANG JUNG-A;LEE JAE-JIN;LEE DAE-HEE;LEE JIN-GUN;KIM HEE-JUN;PARK JAE-HEUNG;MIN KYOUNG WOOK;SHIN YOUNG-HOON
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc2
    • /
    • pp.45-52
    • /
    • 2000
  • Four plasma instruments are currently under development for KAISTSAT-4 (K-4) which is scheduled for launch in 2002. They are the Solid-State Telescope, Electro-Static Analyzer, Langmuir Probe, and the Scientific Magnetometer, that will respectively allow in-situ detection of high energy and low energy components of auroral particles, ionospheric thermal electrons, and magnetic field disturbances. These instruments, together with the Far-ultraviolet IMaging Spectrograph, will provide micro-scale physics of Earth's polar ionosphere with detailed spectral information that has not been previously achieved with other space missions. In this paper, we review the concept of the four space plasma instruments as well as the anticipated results from the instruments.

  • PDF

Formation CubeSat Constellation, SNIPE mission

  • Lee, Jaejin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.58.4-59
    • /
    • 2021
  • This presentation introduces Korea's SNIPE (Small scale magNespheric and Ionospheric Plasma Experiment) mission, formation flying CubeSat constellation. Observing particles and waves on a single satellite suffers from inherent space-time ambiguity. To observe spatial and temporal variations of the micro-scale plasma structures on the topside ionosphere, four 6U CubeSats (~ 10 kg) will be launched into a polar orbit of the altitude of ~500 km in 2021. The distances of each satellite will be controlled from 10 km to more than 100 km by formation flying algorithm. The SNIPE mission is equipped with identical scientific instruments, solid-state telescope, magnetometer, and Langmuir probe. All the payloads have a high temporal resolution (sampling rates of about 10 Hz). Iridium modules provide an opportunity to upload changes in operational modes when geomagnetic storms occur. SNIPE's observations of the dimensions, occurrence rates, amplitudes, and spatiotemporal evolution of polar cap patches, field-aligned currents (FAC), radiation belt microbursts, and equatorial and mid-latitude plasma blobs and bubbles will determine their significance to the solar wind-magnetosphere-ionosphere interaction and quantify their impact on space weather.

  • PDF

Abundant Methanol Ices toward a Massive Young Stellar Object in the Galactic Center

  • An, Deokkeun;Sellgren, Kris;Adwin Boogert, A.C.;Ramirez, Solange V.;Pyo, Tae-Soo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.57.1-57.1
    • /
    • 2016
  • Methanol ($CH_3OH$) is a key species in the formation of complex organic molecules. We report the first detection of solid $CH_3OH$ in a line of sight toward the Galactic center (GC) region, based on L-band spectra taken with the Subaru telescope, aided by L'-band imaging data and moderate-resolution spectra from NASA/IRTF. It is found toward a background star, ~8000 AU in projected distance from a newly discovered massive young stellar object (YSO). This YSO also exhibits a strong $CO_2$ ice absorption band at ${\sim}15{\mu}m$ in Spitzer/IRS data, which has a prominent long-wavelength wing. It confirms that a high $CH_3OH$ abundance is responsible for the broad $15{\mu}m$ $CO_2$ ice absorption towards massive YSOs in the GC. Clearly, $CH_3OH$ formation in ices is efficient in the GC region, as it is in star-forming regions in the Galactic disk. We discuss implications of our result on the astrochemical processes in the hostile GC molecular clouds.

  • PDF