• Title/Summary/Keyword: solid state fermentation

Search Result 145, Processing Time 0.042 seconds

Comparison of Liquid and Solid-State Fermentation Processes for the Production of Enzymes and Beta-Glucan from Hulled Barley

  • Lee, Se Yeon;Ra, Chae Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.317-323
    • /
    • 2022
  • Solid-state fermentation using hulled barley was carried out to produce enzymes and β-glucan. The one-factor-at-a-time experiments were carried out to determine the optimal composition of the basal medium. The modified synthetic medium composition in liquid-state fermentation was determined to be 70 g/l hulled barley, 0 g/l rice bran, 5 g/l soytone, and 6 g/l ascorbic acid. Optimal pretreatment conditions of hulled barley by solid-state fermentation were evaluated in terms of maximum production of fungal biomass, amylase, protease, and β-glucan, which were 1.26 mg/g, 31310.34 U/g, 2614.95 U/g, and 14.6% (w/w), respectively, at 60 min of pretreatment condition. Thus, the solid-state fermentation process was found to enhance the overall fermentation yields of hulled barley to produce high amounts of enzymes and β-glucan.

Characteristics of Solid-state Fermented Feed and its Effects on Performance and Nutrient Digestibility in Growing-finishing Pigs

  • Hu, Jiankun;Lu, Wenqing;Wang, Chunlin;Zhu, Ronghua;Qiao, Jiayun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.11
    • /
    • pp.1635-1641
    • /
    • 2008
  • This study investigated the effects of solid-state fermentation of a compound pig feed on its microbial and nutritional characteristics as well as on pig performance and nutrient digestibility. A mixed culture containing Lactobacillus fermentum, Saccharomyces cerevisae and Bacillus subtilis was used for solid-state fermentation and solid-state fermented feed samples were collected on days 0, 1, 2, 3, 5, 7, 10, 15, 20 and 30 for microbial counts and chemical analysis. Lactic acid bacteria increased rapidly during the first three days of fermentation and then slowly declined until day 10 and, thereafter, the counts were maintained at about 6.7 log cfu/g for the duration of the fermentation period. Enterobacteria also increased during the first two days, and then fell below the detectable level of the analysis (3.0 log cfu/g). The pH of the fermentation substrate declined from 6.1 at the start of fermentation to 5.7 by day 30. The water-soluble protein content increased from 8.2 to 9.2% while the concentration of acetic acid increased from 16.6 to 51.3 mmol/kg over the 30-day fermentation. At the end of the 30-day fermentation, the solid-state fermented feed was used in a pig feeding trial to determine its effects on performance and nutrient digestibility in growing-finishing pigs. Twenty crossbred barrows ($14.11{\pm}0.77kg\;BW$) were allotted into two dietary treatments, which comprised a regular dry diet containing antibiotics and a solid-state fermented feed based diet, free of antibiotics. There was no difference due to diet on pig performance or nutrient digestibility. In conclusion, solid-state fermentation resulted in high counts of lactic acid bacteria and low counts of enterobacteria in the substrate. Moreover, feeding a diet containing solid-state fermented feed, free of antibiotics, can result in similar performance and nutrient digestibility in growing-finishing pigs to a regular diet with antibiotics.

Production of Pigment by Liquid Culture and Monacolin K in Red Mold Rice by Solid State Fermentation of Monascus ruber Strains (Monascus ruber의 액체배양을 통한 색소 생산 및 고체발효를 통한 홍국쌀의 monacolin K 생산 특성)

  • Park, Youn-Je
    • KSBB Journal
    • /
    • v.28 no.6
    • /
    • pp.400-407
    • /
    • 2013
  • The growth characteristics and production of color pigments by Monascus strains were investigated during liquid culture, and production of monacolin K in red mold rice was carried out by solid state fermentation. Four different Monascus ruber strains were cultured in potato dextrose yeast extract broth (PDYB) media at $25^{\circ}C$ for 15 days. The high producing strain for red pigment was not corresponded to the strain for yellow pigment. Production of red pigment was high in the strain causing the fast pH change in culture broth. Production of monacolin K in red mold rice by solid state fermentation was influenced by a combination of wet cell weight and spore density in inoculum by liquid culture. Most strains showed the high production of monacolin K in red mold rice, when submerged fermentation was carried out for 5 days as inoculum for solid state fermentation. These results suggest that submerged fermentation period of inoculum have an effect on the production of monacolin K in red mold rice by solid state fermentation, and monacolin K in red mold rice could be increased by controlling the condition of submerged fermentation for inoculum.

Composting of Organic Wastes by solid State Fermentation Reactor (Solid State Fermentation Reactor를 이용한 유기성 폐기물의 발효)

  • 홍운표;이신영
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.4
    • /
    • pp.311-319
    • /
    • 1999
  • Leaves of Aloe vera Linne and bloods of domestic animal were composted in a soild state fermentation reactor (SSFR) by using microbial additive including a bulking and moisture controlling agent. From solid-culture of microbial additive, 10 species of bacteria and 10 species of fungi were isolated and, their enzyme activities including amylase, carboxy methyl cellulase CMCase, lipase and protease were detected. Optimum fermentation conditions of Aloe leaves and domestic animal bloods in SSFR were obtained from the studies of response surface analysis employing microbial additive content, initial moisture content, and fermentation temperature as the independent variables. The optimum conditions for SSFR using Aloe leaves were obtained at 9.45$\pm$73%(w/w) of microbial additives, 62.73$\pm$4.54%(w/w) of initial moisture content and 55.32$\pm$3.14$^{\circ}C$ of fermentation temperature while those for SSFR using domestic animal bloods were obtained at 10.25$\pm$2.04%, 58.68$\pm$4.97% and 57.85$\pm$5.$65^{\circ}C$, respectively. Composting process in SSFR was initially proceeded through fermentation and solid materials were decomposed within 24 hours by maintaining higher moisture level, and maturing and drying steps are followed later. After the fermentation step, the concentrations of solid phase inorganic components were increased while that of organic components were decreased. Also, concentrations of total organic carbon(TOC), peptides, amino acids, polysaccharides, and low fatty acids in water extracts were increased. As fermentation in composting process depends on initial C/N ratios in water extracts of two samples were increased because of increased water-soluble TOC. From these results, it was revealed that solid state fermentation reactor using microbial additives can be used in composting process of organic wastes with broad C/N ratio.

  • PDF

Coproduction of Enzymes and Beta-Glucan by Aspergillus oryzae Using Solid-State Fermentation of Brown Rice

  • Ji, Su Bin;Ra, Chae Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.1028-1034
    • /
    • 2021
  • The effect of medium composition on enzyme and β-glucan production by Aspergillus oryzae KCCM 12698 was investigated. Brown rice, rice bran, nitrogen, and ascorbic acid are key components of the synthetic medium used in liquid-state fermentation. To determine the optimal concentrations of these components for enzyme and β-glucan production, we conducted one factor at a time experiments, which showed that the optimal concentrations were 30 g/l brown rice, 30 g/l rice bran, 10 g/l soytone, and 3 g/l ascorbic acid. Pretreatment of brown rice for 60 min prior to inoculation enhanced fungal biomass, while increasing the production of enzymes and β-glucan using solid-state fermentation. Maximum fungal biomass of 0.76 mg/g, amylase (26,551.03 U/g), protease (1,340.50 U/g), and β-glucan at 9.34% (w/w) were obtained during fermentation. Therefore, solid-state fermentation of brown rice is a process that could enhance yield and overall production of enzymes and β-glucan for use in various applications.

Effect of Abiotic Factors on Fumosorinone Production from Cordyceps fumosorosea via Solid-State Fermentation

  • Tahir Khan;Dong-Hai Hou;Jin-Na Zhou;Yin-Long Yang;Hong Yu
    • Mycobiology
    • /
    • v.51 no.3
    • /
    • pp.157-163
    • /
    • 2023
  • Cordyceps fumosorosea is an important species in the genus of Cordyceps, containing a variety of bioactive compounds, including fumosorinone (FU). This study was a ground-breaking assessment of FU levels in liquid and solid cultures. The present study focused on the impacts of solid-state fermentation (SSF) using solid substrates (wheat, oat, and rice), as well as the effects of fermentation parameters (pH, temperature, and incubation period), on the generation of FU. All the fermentation parameters had significant effects on the synthesis of FU. In a study of 25 ℃, 5.5 pH, and 21 days of incubation period combinations calculated -to give maximal FU production, it was found that the optimal values were 25 ℃, 5.5 pH, and 21 days, respectively. In a solid substrate medium culture, FU could be produced from SSF. At 30 days, a medium composed of rice yielded the most FU (798.50 mg/L), followed by a medium composed of wheat and oats (640.50 and 450.50 mg/L), respectively. An efficient method for increasing FU production on a large scale could be found in this approach. The results of this study might have multiple applications in different industrial fermentation processes.

Enhancement of Piperidine Alkaloid Contents by Lactic Acid Fermentation of Mulberry Leaves (Morus alba L.) (뽕잎의 유산발효에 의한 Piperidine Alkaloid 함량 증진)

  • Ryu, Il Hwan;Kwon, Tae Oh
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.6
    • /
    • pp.472-478
    • /
    • 2012
  • This study was carried out to investigate solid-state fermentation method using cellulolytic lactic acid bacteria Lactobacillus plantarum TO-2100 in order to increase piperidine alkaloid contents in mulberry leaves. Piperidine alkaloid, one type of which include 1-deoxynojirimycin (1-DNJ), is known to inhibit ${\alpha}$-glycosidase activities. Using this strain, the optimal solid-state fermentation conditions on mulberry leaves powder were found as the following: initial moisture content, temperature and relative humidity were 20%, $30{\sim}35^{\circ}C$ and 60 ~ 70%, respectively, and the fermentation time was 72 hrs. The piperidine alkaloid contents in the fermented mulberry leaves were 2.86% on dry powder, which is 7-fold increase from that of non-fermented mulberry leaves. The 1-deoxynojirimycin contents after applying preparative thin layer chromatography were 2.02% on dry powder, which is 8 times higher than that of non-fermented mulberry leaves. ${\alpha}$-Glycosidase activities was inhibited by 65.7 ~ 84.7% with 3 ~ 5% treatments of hot-water extracts of the fermented mulberry leaves, compared to 16.2 ~ 40.2% with 3 ~ 5% treatments of hot-water extracts of non-fermented mulberry leaves. Therefore, the results suggest that solid-state fermentation method does indeed increase of piperidine alkaloid contents on mulberry leaves.

Lovastatin Production in Solid-state Fermention by Aspergillus terreus and Its Application for Animal Feed Additive

  • Yoon, Ji-Yong;Han, Kyu-Boem
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.263-267
    • /
    • 2003
  • Solid-state fermentation of lovastatin by Aspergillus terreus was investigated using commercially available 1.2 L polypropylene bottle designed for mushroom cultivation. Moist solid raw materials such as com, rice, and soy bean were tested and com was found to be most suitable for an economical production of lovastatin. 50% or higher water addition prior to the sterilization of com was effective for the maximal lovastatin production. About 0.5% (w/w) lovastatin content in dried cells and corn mass was obtained after 20 days of solid-state fermentation at 30$^{\circ}C$. For safety concerns, aflatoxin Bl and citrinin levels after fermentation were assayed but they were not detected. Lovastatin containing cells and corn residue after fermentation were autoclaved, dried, crushed, and fed to chicken for a period of 3 weeks. Approximately 20% reduction of blood cholesterol level of chicken was observed.

  • PDF

Glucoamylase Production in Batch and Fed-Batch Solid State Fermentation: Effect of Maltose or Starch Addition

  • Bertolin, Telma Elita;Jorge Alberto Vieira Costa;Gean Delise Leal Pasquali
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.13-16
    • /
    • 2001
  • Maltose and soluble starch were used as secondary sources of carbon for glucoamylase production by Aspergillus awamori in solid state fermentation. During batch cultivation, maltose above 2.5%(w/w) repressed glucoamylase production, but, by adding either 2.5% (w/w) maltose or 1.25% (w/w) soluble starch to fed-batch cultivations, glucoamylase activity was increased by 15% and 170% over standard medium, respectively. The data showed that maltose is a weak inducer of glucoamylase production in solid stat fermentation.

  • PDF

Raw Starch Degrading Amylase Production by Various Fungal Cultures Grown on Cassava Waste

  • Pothiraj, C.;Balaji, P.;Eyini, M.
    • Mycobiology
    • /
    • v.34 no.3
    • /
    • pp.128-130
    • /
    • 2006
  • The solid waste of sago industry using cassava was fermented by Aspergillus niger, Aspergillus terreus and Rhizopus stolonifer in solid state fermentation. Cassava waste contained 52 per cent starch and 2.9 per cent protein by dry weight. The amylase activity was maintained at a high level and the highest amylase activity was observed on the $8^{th}$ day in R. stolonifer mediated fermentation. R. stolonifer was more efficient than Aspergillus niger and Aspergillus terreus in bioconverting cassava waste into fungal protein (90.24 mg/g) by saccharifying 70% starch and releasing 44.5% reducing sugars in eight days of solid state fermentation.