• Title/Summary/Keyword: solid state dye

Search Result 62, Processing Time 0.026 seconds

J-aggregation Property of Merocyanine Dye LB Thin Film by UV Irradiation (UV 조사에 의한 메로시아닌 색소 LB박막의 J-aggregation 특성)

  • Yang, Chang-Heon;Lee, Ji-Yoon;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.123-124
    • /
    • 2008
  • We investigate characteristics of J-aggregation as take advantage of LB technic. In order to confirm the applications possible for the molecular electronic device, the morphological properties of merocyanine dye were investigated by AFM. $\pi$-A curves investigated the surface pressure of the LB film from a liquid to a solid state ranged between 90 and 100 mN/m. We observed aggregation and it's characteristics by using visible reflection spectroscopy. This paper focuses on results obtained in mercocyanide dye. When LB films of merocyanine dye are mixed with arachidic acid, J-aggregate formation is exhibited. J-aggregate formation has been serving as typical systems in revealing the physical and structural aspects of nano-sized molecular aggregates constructed as muiltilayers.

  • PDF

Polymer Electrolytes and their Application to Solar Cells and Separation Membranes (촉진수송 및 태양전지용 분리막)

  • 강용수
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.03a
    • /
    • pp.13-35
    • /
    • 2004
  • Metal Complexes in Macromolecules Applications of Polymer Electrolyte Membranes Facilitated Transport in Solid State Roles of Electrolytes in Solar Cells - Electrolytes :ㆍI- and $I_3$-conductor ㆍelectron barrier or hole conductor ㆍelectrochemical redox reaction media ㆍinterfacial contactor for dye, $TiO_2$ and electrode ㆍmechanical separator (omitted)

  • PDF

The correlation between ionic conductivity and cell performance with various compositions of polymer electrolyte in dye-sensitized solar cells (염료감응형 태양전지에서의 고분자 전해질 종류에 따른 이온전도도와의 상호관계)

  • Cha, Si-Young;Kim, Su-Jin;Lee, Yong-Gun;Kang, Yong-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.306-308
    • /
    • 2007
  • Poly(ethylene glycol) dimethyl ether (PEGDME)/fumed silica/ 1-methyl -3-propylimidazolium iodide (MPII)/$I_2$ mixtures were used as polymer electrolytes in solid state dye-sensitized solar cells (DSSCs). The contents of MPII were changed and the concentration of $I_2$ was fixed at 0.1 mole% with respect to the MPII. The maximum ionic conductivity was obtained at [EG]:[MPII]:[$I_2$]=10:1.5:0.15. It was supposed that the maximum of ionic conductivities would match with that of cell efficiencies, if the ionic conductivity is a rate determining step in the sol id state DSSCs. However, the maximum composition did not show the maximum solar cell performance, indicating the mismatch between ionic conductivity and cell performance. This suggests that the ionic conductivity may not be the rate controlling step in determining the cell efficiency in these experimental conditions, whereas other parameters such as the electron recombination might play an important role. Thus, we tried to modify the surface of the $TiO_2$ particles by coating a thin metal oxide such as $Al_2O_3$ or $Nb_2O_5$ layer to prevent electron recombination. As a result, the maximum of the cell efficiency was shifted to that of the ionic conductivity. The peak shifts were also attempted to be explained by the diffusion coefficient and the lifetime of electrons in the $TiO_2$ layer.

  • PDF

Electrochemical properties of metal salts polymer electrolyte for DSSC (금속염을 이용한 염료감응 태양전지의 고체전해질의 전기화학적 특성)

  • Zhao, Xing Guan;Jin, En Mei;Gu, Hal-Bon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.55.1-55.1
    • /
    • 2011
  • Dye-sensitized solar cell(DSSC) have been considered one of the promising alternatives to conventional solar cells, because of their low cost, easy fabrication and relatively high energy conversion efficiency. However, although the cell offers reasonable efficiency at least 11%, the use of a liquid electrolyte placed technological challenges for achieving the desired durability and operational stability of the cell. In order to prevent or reduce electrolyte leakage considerable efforts have been made, such as p-type semiconductor or organic hole-transport material that better mechanical properties and simple fabrication processes. In this work, we synthesized solid-state electrolyte containing LiI and KI metal salt with starting materials of poly ethylene oxide to substitute liquid electrolyte enhance the ionic conductivity and solar conversion efficiency. Li+ leads to faster diffusion and higher efficiency and K+ leading to higher ionic conductivity. The efficiency of poly ethylene oxide/LiI system electrolyte is 1.47% and poly ethylene oxide/potassium electrolyte is 1.21%. An efficiency of 3.24% is achieved using solid-state electrolyte containing LiI and KI concentrations. The increased solar conversion efficiency is attributed to decreased crystallinity in the polymer that leads to enhanced charge transfer.

  • PDF

The measurement into Merocyanine Dye J-aggregaion of characteristic as various temperature by STM (STM을 이용한 온도 변화에 따른 Merocyanine Dye J-aggregation 특성측정)

  • Yang, Chang-Heon;Lee, Ji-Yoon;Kim, Gyong-Chol;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.165-166
    • /
    • 2008
  • We investigate characteristics of J-aggregation as take advantage of LB technic. In order to confirm the applications possible for the molecular electronic device, the morphological properties of merocyanine dye were investigated by AFM. ${\pi}-A$ curves investigated the surface pressure of the LB film from a liquid to a solid state ranged between 90 and 100 mN/m. We observed aggregation and it's characteristics by using visible reflection spectroscopy. We have observed morphology of merocyanine dye on gold surface by STM. focuses on results obtained in mercocyanide dye of J-aggregation. When LB films of merocyanine dye are mixed with arachidic acid, J-aggregate formation is exhibited. J-aggregate formation has been serving as typical systems in revealing the physical and structural aspects of nano-sized molecular aggregates constructed as muiltilayers.

  • PDF

Fungal Growth and Manganese Peroxidase Production in a Deep Tray Solid-State Bioreactor, and In Vitro Decolorization of Poly R-478 by MnP

  • Zhao, Xinshan;Huang, Xianjun;Yao, Juntao;Zhou, Yue;Jia, Rong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.803-813
    • /
    • 2015
  • The growth of Irpex lacteus F17 and manganese peroxidase (MnP) production in a selfdesigned tray bioreactor, operating in solid-state conditions at a laboratory scale, were studied. The bioreactor was divided into three layers by three perforated trays. Agroindustrial residues were used both as the carrier of bound mycelia and as a nutrient medium for the growth of I. lacteus F17. The maximum biomass production in the bioreactor was detected at 60 h of fermentation, which was consistent with the CO2 releasing rate by the fungus. During the stationary phase of fungal growth, the maximum MnP activity was observed, reaching 950 U/l at 84 h. Scanning electron microscopy images clearly showed the growth situation of mycelia on the support matrix. Furthermore, the MnP produced by I. lacteus F17 in the bioreactor was isolated and purified, and the internal peptide sequences were also identified with mass spectrometry. The optimal activity of the enzyme was detected at pH 7 and 25℃, with a long half-life time of 9 days. In addition, the MnP exhibited significant stability within a broad pH range of 4-7 and at temperature up to 55℃. Besides this, the MnP showed the ability to decolorize the polymeric model dye Poly R-478 in vitro.

Design of Supramolecular Electrolytes for Solid State Dye-sensitized Solar Cells (고체형 염료감응 태양전지용 초분자 전해질 개발)

  • Koh, Jong-Kwan;Koh, Joo-Hwan;Seo, Jin-Ah;Kim, Jong-Hak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.24-27
    • /
    • 2009
  • Solid-state dye-sensitized solar cells (DSSCs) have been constructed employing supramolecular electrolytes with multiple hydrogen bonding. A supramolecule was facilely synthesized by one-pot reaction between the amines of methyl isocytosine (MIC) and the epoxy groups of poly(ethylene glycol diglycidyl ether) (PEGDGE) to produce quadruple hydrogen bonding units. Hydrogen bonding interactions and dissolution behavior of salt in supramolecular electrolytes are investigated. The ionic conductivity of the supramolecular electrolytes with ionic liquid, i.e. 1-methyl-3-propylimidazolium iodide (MPII) reaches $8.5{\times}10^{-5}$ S/cm at room temperature, which is higher than that with metal salt (KI). A worm-like morphology is observed in the FE-SEM micrographs of $TiO_2$ nanoporous layer, due to the connection of $TiO_2$ nanoparticles resulting from adequate coating by electrolytes. DSSCs employing the supramolecular electrolytes with MPII and KI exhibit an energy conversion efficiency of 2.5 % and 0.5 %, respectively, at 100 $mW/cm^2$, indicating the importance of the cation of salt. Solar cell performances were further improved up to 3.7 % upon introduction of poly(ethylene glycol dimethyl ether) (PEGDME) with 500 g/mol.

  • PDF

Wide Band Tunable Solid-State Dye Laser (광대역 파장가변 고체상태 색소레이저)

  • Im, Kwon;Ko, Do-Kyung;Kim, Hyun-Soo;Cha, Byung-Heon;Lee, Jong-Min
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.40-41
    • /
    • 2001
  • 파장가변레이저에서 널리 사용되는 이득매질로서 색소를 고체 상태로 사용하는 경우에는 색소를 폴리머 혹은 Sol-gel 형태의 호스트 매질에 침착시켜 고체화한다. 이와 같은 고체 상태로 색소를 사용하면 액체 상태로 색소를 순환시켜 사용하는 것보다 편리한 이점이 있다. 순환식 색소 레이저의 경우에는 레이저 광학계 이외의 색소 순환장치들이 첨가됨에 따라서 레이저 장치의 크기가 비대해지는 점에 반하여, 고체 색소 레이저의 경우에는 고체 색소 쎌로 대체됨에 따라서 소형의 레이저 장치로서 구성된다. (중략)

  • PDF

Low Temperature Synthesis of TiO2 Films for Application to Dye-sensitized Solar Cells

  • Wi, Jin-Seong;Choe, Eun-Chang;Seo, Yeong-Ho;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.475-475
    • /
    • 2014
  • Dye sensitized solar cells (DSSCs) are regarded as potential inexpensive alternatives to conventional solid-state devices. The flexible version, employing conductive-plastic-film substrates, is appealing for commercialization of DSSCs because it not only reduces the weight and cost of the device but also extends their applications. However, the need for high temperature does not permit the use of plastic-film substrate. So, development of low-temperature methods is therefore realization of flexible DSSCs. In this work, the electrophoretic deposition combined with hydrothermal treatment was employed to prepare nanocrystalline $TiO_2$ thin film at low temperature. We confirmed the prepared $TiO_2$ thin films with different voltages and deposition times in the electrophoretic deposition process. Properties of the $TiO_2$ films were investigated by various analysis method such as X-ray diffraction, field emission scanning electron microscopy (FESEM) and UV-visible spectrophotometer.

  • PDF