• Title/Summary/Keyword: solid rocket motor

Search Result 247, Processing Time 0.021 seconds

Numerical Study and Thrust Prediction of Pintle-Controlled Nozzle with Split-line TVC System (스플릿라인 TVC 시스템을 적용한 핀틀 추력조절 노즐의 유동해석 및 추력 성능 예측)

  • Jo, Hana
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.3
    • /
    • pp.43-53
    • /
    • 2022
  • In this study, analysis of the flow characteristics of pintle-controlled nozzle with split-line TVC system and the thrust performance prediction was performed. The numerical computation was verified by comparing the thrust coefficient derived from the analysis results with the experimental data. By applying the same numerical analysis technique, the flow characteristics of nozzle were confirmed according to operating altitude, pintle stroke position and TVC angle with the 1/10 scale. As the TVC angle increased, thrust loss occurred and the tendency of AF was different depending on the position of the pintle stroke. Based on the analysis results, the relation of thrust coefficient was derived by applying the response surface methods. The thrust performance model with a slight difference of 1.2% on average from the analysis result was generated.

Grain Geometry, Performance Prediction and Optimization of Slotted Tube Grain for SRM

  • Nisar, Khurram;Liang, Guozhu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.293-300
    • /
    • 2008
  • Efficient designing of SRM Grains in the field of Rocketry is still the main test for most of the nations of world for scientific studies, commercial and military applications. There is a strong need to enhance thrust, improve the effectiveness of SRM and reduce mass of motor and burning time so as to allow the general design to increase the weight of payload/on board electronics. Moreover burning time can be increased while keeping the weight of the propellant and thrust in desired range, so as to give the time to control / general design group in active phase for incorporating delayed cut off if required. A mathematical design, optimization & analysis technique for Slotted Tube Grain has been discussed in this paper. In order to avoid the uncertainties that whether the Slotted Tube grain configuration being designed is best suited for achieving the set design goals and optimal of all the available designs or not, an efficient technique for designing SRM Grain and then getting optimal solution is must. The research work proposed herein addresses and emphasizes a design methodology to design and optimize Slotted Tube Grain considering particular test cases for which the design objectives and constraints have been given. In depth study of the optimized solution have been conducted thereby affects of all the independent parametric design variables on optimal solution & design objectives have been examined and analyzed in detail. In doing so, the design objectives and constraints have been set, geometric parameters of slotted tube grain have been identified, performance prediction parameters have been calculated, thereafter preliminary designs completed and finally optimal design reached. A Software has been developed in MATLAB for designing and optimization of Slotted Tube grains.

  • PDF

The Optimization of NDT Method for Real Time X-ray Imaging (X선 실시간 영상장치를 이용한 비파괴시험 조건 최적화 연구)

  • Na, Sung-Youb;Choi, Yong-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.1
    • /
    • pp.19-28
    • /
    • 1996
  • This study has investigated the optimization of NDT method and the minimum detectable defect size for complex structures such as the solid propellant rocket motor using real time X-ray imaging system. Test specimens were made of steel plates with various defect size, and installed with proper thickness for which solid propellant, rubber, and case converted to the steel equivalent thickness according to the radiographic equivalent theory. As the results, this examination obtained optimum magnification and X-ray energy, dose rate according to steel equivalent thickness, also, obtained the relationship between minimum detectable defect size and the ratio(defect depot/object thickness). Thus, this simulated test is the preliminary procedure before performing NDT for real objects, and is possibly applied for NDT of other complex structures.

  • PDF

Design of Fastener for Solid Rocket Motor Using Solid CAD System (CAD 시스템에서의 고체추진기관 체결류 설계에 대한 연구)

  • Lee, Kang-Soo;Kim, Won-Hoon;Seok, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.805-811
    • /
    • 2010
  • When we design a product, we spend a considerable amount of time in designing fasteners and their mating parts. Fasteners have special features because of which they are widely used and well standardized. Although we use some equations to design the fasteners, we should select these fasteners from the standardized table. In order to design them quickly using the CAD system, we proceeded as follows. First, we prepared some standardized shapes of fasteners to design them automatically. Next, we built a database of some fasteners such as a tension bolt, lock wire, thread, pin, and snap ring. Then, we used the design equations to quickly and precisely calculate the various parameters. Finally, we used a configuration design method to generate the shapes automatically using the results of the calculation and the values retrieved from the database. We applied this approach to the design of a propulsion structure, and demonstrated that this approach worked well and saved considerable time.

Effects of Solid Propellant Cases on the Thermal Response of Nozzle Liner (노즐 내열재 열반응에 미치는 고체 추진제 연소가스의 영향)

  • Hwang, Ki-Young;Yim, Yoo-Jin;Ham, Hee-Cheol;Kang, Yoon-Goo;Bae, Joo-Chan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.26-36
    • /
    • 2007
  • The thermal response characteristics of nozzle liner for a solid rocket motor applying highly aluminized PCP or HTPB propellant with slotted tube grain have been investigated. The SEM photographs of aluminum oxide particles taken from nozzle liner show that the PCP propellant with the finer and less contents of oxidizer can offer greater possibility for increasing aluminum agglomeration than the HTPB propellant. The PCP propellant shows locally greater mechanical erosion at 4 circumferential areas of the nozzle entrance in line with grain slot due to the impingement of large particles, but the HTPB propellant shows greater thermochemical ablation at the nozzle blast tube, the throat insert and the exit cone because of relatively much more mole fraction of $H_2O\;and\;CO_2$ in combustion gases.

Design of Gun Launched Ramjet Propelled Artillery Shell with Inviscid Flow Assumption (비점성 유동을 가정한 포 발사 램제트 추진탄 설계)

  • Kang, Shinjae;Park, Chul;Jung, Woosuk;Kwon, Taesoo;Park, Juhyeon;Kwon, Sejin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.52-60
    • /
    • 2015
  • Operation area of corps was expanded under military reformation, and extending range of 155 mm howitzer became important issue. New approach is needed to extend range to 80 kim. Ramjet engine is air breathing engine, and it can provide specific impulse several times more than solid rocket motor so that range is extended using same weight of propellant. If the ramjet engine is gun-launched system, it does not require any other booster because muzzle velocity is near Mach 3. Especially solid fuel ramjet (SFRJ) does not have any moving part so that it is favorable for gun-launching system which is under high stress during launching. In this paper, we design air intake, combustion chamber, and nozzle of 155 mm gun launched ramjet propelled artillery shell with inviscid flow assumption. We conduct parameter study to have range more than 80 km, and maximum high explosive volume.

Study on the Experimental Aging Estimation Technique for HTPB based Solid Propellant Considering Post Curing Effect (후경화를 고려한 HTPB 고체 추진제의 실험적 노화평가 기법 연구)

  • Jung, Gyoo Dong;Park, Jae Beom;Kim, Shinhoe
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.51-57
    • /
    • 2019
  • Post curing effects are estimated by specimen tests. Propellant specimen accelerated aging tests are performed when post curing is estimated to be complete and the coefficients of Arrhenius aging equations are acquired. Simulated motors with cylindrical grain are designed and fabricated to confirm the application. Accelerated aging tests are conducted, and aged properties are measured and estimated for the inner bore, center and bond parts of the grain. The measured aging ratios of the modulus are compared with the ones predicted by the equations. As the results, the accelerated aging equations predict well the propellant aging trends; however, some differences are observed at the bond part. Therefore, the specimen extraction part must be carefully chosen to suit the test purpose when a rocket motor grain is used for the aging test.