• 제목/요약/키워드: solid oxide fuel cell (SOFC)

검색결과 340건 처리시간 0.027초

메탄올 연료형 SOFC 시스템의 성능 평가 (Performance Analysis of Methanol Fueled Marine Solid Oxide Fuel Cell System)

  • 김명환;길병래;임태우;김종수;오세진;박상균;김만응;이경진;오진숙
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권4호
    • /
    • pp.448-454
    • /
    • 2010
  • GHG 및 대기오염물질 배출 규제는 고효율 및 친환경에 적합한 새로운 선박용 동력장치의 필요성을 제기하고 있다. 최근 이와 같은 문제들을 근본적으로 해결하기 위한 지속가능한 방법으로서 연료전지를 선박의 동력발생장치로 도입하고자 하는 검토가 진행되고 있다. 본 논문은 액체연료인 메탄올을 기반으로 한 고체산화물형 연료전지시스템의 성능 특성을 분석한 것으로 공기극 입구온도 일정의 조건에서 스택의 작동온도, 전류밀도, S/C, 수소연료 이용률의 영향을 시뮬레이션으로 검토하고 있으며, 그 결과를 기체연료인 메탄의 경우와 비교하고 있다.

박막 코팅을 이용한 SOFC 분리판 재료의 내산화성 향상 (Improvement of Oxidation-resisting Characteristic for SOFC Interconnect Material by Use of Thin Film Coating)

  • 이창보;배중면
    • 대한기계학회논문집B
    • /
    • 제30권12호
    • /
    • pp.1211-1217
    • /
    • 2006
  • This study is focused on oxidation prevention of STS430, which is generally used as solid oxide fuel cell(SOFC) interconnect at intermediate operating temperatures with oxidation-proof coatings. Inconel, $La_{0.6}Sr_{0.4}CoO_3(LSCo)$ and $La_{0.6}Sr_{0.4}CoO_3(LSCr)$ were chosen as coating materials. Using a radio frequency magnetron sputtering method, each target material was deposited as thin film on STS430 and was analyzed to find out favorable conditions. In this study, LSCr-coated STS430 can reduce electrical resistance to 1/3 level, compared with uncoated STS430. Also, long-term durability test at $700^{\circ}C$ for 1000 hours tells that LSCr thin layer performs an important role to prohibit serious degradations. Superior oxidation-resistant characteristic of LSCr-coated STS430 is attributed to the inhibition of spinel structure formation such as $MnCr_2O_4$.

임피던스법을 이용한 연료전지의 특성 연구 (Fuel Cell Performance by the Impedance Method)

  • 서장수;김귀열;명기환;이성일;김용주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.927-933
    • /
    • 2000
  • The molten carbonate fuel cell has conspicuous feature and high potential in being used as an energy converter of various fuel to electricity and heat. However, the MCFC which use strongly corrosive molten carbonate at 650$^{\circ}C$ have many problem. Systematic investigation on corrosion behavior of Fe/20Cr/Ti alloys has been done in (62+38)mol% (Li+K)CO3 melt at 923K by using steady state polarization and electrochemical impedance spectroscopy method. And, The research and development for the solid oxide fuel cell have been promoted rapidly and extensively in recent years, because of their high efficiency and future potential. Therefore this paper describes the manufacturing method and characteristics of anode electrode for SOFC, by the way , Ni-YSZ materials are used as anode of SOFC widely. So in this experiments, we investigated the optimum content of Ni, by the impedance characteristics, overvoltage. As a results, the performance of Ni-YSZ anode(40vo1%) was better excellent than the others.

  • PDF

Build and Performance Test of a 3-cell Solid Oxide Fuel Cell Stack

  • Cho, Nam-Ung;Hwang, Soon-Cheol;Han, Sang-Moo;Yang, Choong-Jin
    • 한국세라믹학회지
    • /
    • 제44권8호
    • /
    • pp.407-411
    • /
    • 2007
  • A 3-cell stacked anode-supported solid oxide fuel cell was designed and fabricated to achieve a complete gas seal and the facile stacking of components. The stack was assembled with a unit cell with $10{\times}10cm^2$ area, and each cell was interconnected by a stainless steel 430 separator using a proprietary sealant sheet. The stack performance was examined at various gas flow rates of $H_2+3.5vol%\;H_2O$, and air at a fixed temperature of $800^{\circ}C$. No gas leakage was found from the sealing between cells and inter-connects within a measurement system in this research during a prolonged time of 500 h in operation. The test resulted in an open circuit voltage of 3.12 V, a peak power of 149 W, and a power density of $0.61W/cm^2$, while the long term durability of the power showed 19.1% degradation during the prolonged time of 500 h when tested at $800^{\circ}C$.

The Effect of the Anode Thickness on Electrolyte Supported SOFCs

  • So Yeon Shin;Dae-Kwang Lim;Taehee Lee;Sang-Yun Jeon
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.145-151
    • /
    • 2023
  • Planer-type electrolyte substrates are often utilized for stack manufacturing of electrolyte-supported solid oxide fuel cells (ES-SOFCs) to fulfill necessary requirements such as a high mechanical strength and redox stability. This work did an electrochemical analysis of ES-SOFC with different NiO-YSZ anode thicknesses to find the optimal value for the high performance of the fuel cell. The cell resistivities were constant at anode thickness between 25-58 ㎛, but a thick anode (74 ㎛) caused a high electrode resistivity leading to a dramatic reduction in cell performance. A stability test was performed for 50 hours at 700℃, and the results showed a degradation rate of 0.3% per 1000 h by extrapolated fitting.

고온열처리가 고체산화물연료전지의 전극과 Ag 페이스트의 계면에 미치는 특성 평가 (Evaluation of the Effect of High Temperature on the Interface Characteristics between Solid Oxide Fuel Cell and Ag Paste)

  • 전상구;남승훈;권오헌
    • 한국안전학회지
    • /
    • 제30권1호
    • /
    • pp.21-27
    • /
    • 2015
  • In this study, interfacial characteristics between SOFC and Ag paste as current collector was estimated in the high temperature environment. The Ag paste was used to connect the unit cell of SOFC strongly with interconnector and provide the electrical conductivity between them. To confirm electrical conductivity, Ag paste was treated in the furnace at $800^{\circ}C$ for 48 hours. The sheet resistance of Ag paste was measured to compare the resistance values before and after the heat treatment. Also, the four-point bending test was performed to measure the interfacial adhesion. The unit cell of SOFC and $SiO_2$ wafer were diced and then attached by Ag paste. The $SiO_2$ wafer had the center notch to initiate a crack from the tip of the notch. The modified stereomicroscope combined with the CCD camera and system for measuring the length was used to observe the fracture behavior. To compare the characteristics before heat treatment and after heat treatment, the specimen was exposed in the furnace at $800^{\circ}C$ for 48 hours and then the interfacial adhesion was evaluated. Finally, the interfacial adhesion energy quantitatively increases $1.78{\pm}0.07J/m^2$ to $4.9{\pm}0.87J/m^2$ between the cathode and Ag paste and also increase $2.9{\pm}0.47J/m^2$ to $5.12{\pm}1.01J/m^2$ between the anode and Ag paste through the high temperature. Therefore, it is expected that Ag paste as current collector was appropriate for improving the structural stability in the stacked SOFC system if the electrical conductivity was more increased.

LSC가 코팅된 고체산화물 연료전지용 금속연결재의 특성 연구 (Characteristics of LSC coated Metallic Interconnect for Solid Oxide Fuel Cell)

  • 표성수;이승복;임탁형;박석주;송락현;신동열
    • Korean Chemical Engineering Research
    • /
    • 제48권2호
    • /
    • pp.172-177
    • /
    • 2010
  • 본 논문에서는 SOFC 금속연결재로서 Crofer22APU를 적용하고자 표면에 전도성 산화막($La_{0.8}Sr_{0.2}CoO_3$)을 습식코팅 후, SOFC 작동환경에서 산화거동, 전기적 특성변화 및 미세구조 변화를 관찰하였다. 코팅 전 샌드블러스트 장치를 이용한 Crofer22APU 표면처리를 통하여 코팅막/금속의 접합특성을 개선시킬 수 있었으며, 320 mesh의 입자크기를 갖는 알루미나 분말을 이용하여 표면처리한 경우 접착특성이 극대화되었다.$La_{0.8}Sr_{0.2}CoO_3$ 코팅된 시편의 전기적 특성 평가는 4-wire 법을 이용하여 SOFC 작동환경에서 약 4,000 시간 장기성능 평가하였으며 $12mW{\cdot}cm^2$의 낮은 면저항값을 얻을 수 있었다. 실험종료 후 미세구조 분석결과에서도 전도성 산화막($La_{0.8}Sr_{0.2}CoO_3$) 코팅이 금속의 부식으로 인한 산화층의 생성속도를 늦추고 이로 인한 금속의 전기적 특성이 감소하는 것을 방지하는데 유효함을 확인하였다.

고체전해질형 연료전지의 단위전지 제조와 성능평가 (Performance evaluation and unit cell fabrication for SOFC)

  • 김귀열;엄승욱;문성인;윤문수;임희천;이창우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1995년도 춘계학술대회 논문집
    • /
    • pp.160-162
    • /
    • 1995
  • The research and development for the solid oxide fuel cells have been promoted rapidly and extensively In recent years. because of their high efficiency and future potential. The purpose of this research Is to Investigate the performance evaluation and unit cell fabrication for SOFC.

  • PDF

선박 발전기용 연료전지 시스템의 효율에 관한 연구 (A Study on the Efficiency of Fuel Cells for Marine Generators)

  • 이정희;곽재섭;김광희
    • 한국기계가공학회지
    • /
    • 제17권5호
    • /
    • pp.52-57
    • /
    • 2018
  • Most current ships have adopted on-board diesel generators to produce electricity, but the overall efficiency of equipment is down to about 50% due to thermal losses from operations such as exhaust gas, jacket water cooler, scavenge air cooler, etc. Recently, fuel cells have been highlighted as a promising technology to reduce the effect on the environment and have a higher efficiency. Therefore, this paper suggested a solid oxide fuel cell (SOFC)-gas turbine (GT) using waste heat from a SOFC and SOFC-GT-steam turbine (ST) with Rankine cycle. To compare both configurations, the fuel flow rate, current density, cell voltage, electrical power, and overall efficiency were evaluated at different operating loads. The overall efficiency of both SOFC hybrid systems was higher than the conventional system.

셀 입구 예열방법에 따른 고체산화물 연료전지/가스터빈 하이브리드 시스템의 성능해석 (Performance Analysis of Solid Oxide Fuel Cell/Gas Turbine Hybrid Systems for Different Cell Inlet Preheating Methods)

  • 양원준;김동섭;김재환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1664-1669
    • /
    • 2004
  • Design analysis of the solid oxide fuel cell and gas turbine combined power system is performed considering different methods for preheating cell inlet air. The purpose of air preheating is to keep the temperature difference between cell inlet and outlet within a practical design range. Three different methods are considered such as a burner in front of the cell, a preheater in front of the cell and recirculation of the cathode exit gas. Analyses are carried out for two maximum cell temperature differences. The greater temperature difference ensures higher efficiency. The cathode exit gas recirculation exhibits better performance than other methods.

  • PDF