• Title/Summary/Keyword: solid model system

Search Result 618, Processing Time 0.022 seconds

DEVELOPMENT OF EULERIAN-GRANULAR MODEL FOR NUMERICAL SIMULATION MODEL OF PARTICULATE FLOW (Eulerian-Granular method를 사용한 고체 입자 유동 모델 개발)

  • Lee, T.G.;Shin, S.W.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.46-51
    • /
    • 2015
  • In this paper, we have developed numerical model for particulated flow through narrow slit using Eulerian-Granular method. Commercial software (FLUENT) was utilized as simulation tool and main focus was to identify the effect from various numerical options for modeling of solid particles as continuos phase in granular flow. Gidaspow model was chosen as basic model for solid viscosity and drag model. And lun-et-al model was used as solid pressure and radial distribution model, respectively. Several other model options in FLUENT were tested considering the cross related effect. Mass flow rate of the particulate through the slit was measured to compare. Due to the high volume density of the stacked particulates above the slit, effect from various numerical options were not significant. The numerical results from basic model were also compared with experimental results and showed very good agreement. The effects from the characteristics of particles such as diameter, angle of internal friction, and collision coefficient were also analyzed for future design of velocity resistance layer in solar thermal absorber. Angle of internal friction was found to be the dominat variable for the particle mass flow rate considerably. More defined 3D model along with energy equation for complete solar thermal absorber design is currently underway.

CFD Simulation of Multiphase Flow by Mud Agitator in Drilling Mud Mixing System

  • Kim, Tae-Young;Jeon, Gyu-Mok;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.121-130
    • /
    • 2021
  • In this study, a computational fluid dynamics (CFD) simulation based on an Eulerian-Eulerian approach was used to evaluate the mixing performance of a mud agitator through the distribution of bulk particles. Firstly, the commercial CFD software Star-CCM+ was verified by performing numerical simulations of single-phase water mixing problems in an agitator with various turbulence models, and the simulation results were compared with an experiment. The standard model was selected as an appropriate turbulence model, and a grid convergence test was performed. Then, a simulation of the liquid-solid multi-phase mixing in an agitator was simulated with different multi-phase interaction models, and lift and drag models were selected. In the case of the lift model, the results were not significantly affected, but Syamlal and O'Brien's drag model showed more reasonable results with respect to the experiment. Finally, with the properly determined simulation conditions, a multi-phase flow simulation of a mud agitator was performed to predict the mixing time and spatial distribution of solid particles. The applicability of the CFD multi-phase simulation for the practical design of a mud agitator was confirmed.

Development of the Fuzzy-Based System for Stress Intensity Factor Analysis

  • Lee, Joon--Seong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.255-260
    • /
    • 2002
  • This paper describes a fuzzy-based system for analyzing the stress intensity factors (SIFs) of three-dimensional (3D) cracks. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-coded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The singular elements such that the mid-point nodes near crack front are shifted at the quarter-points, and these are automatically placed along the 3D crack front. The complete finite element(FE) model is generated, and a stress analysis is performed. The SIFs are calculated using the displacement extrapolation method. To demonstrate practical performances of the present system, semi-elliptical surface cracks in a inhomogeneous plate subjected to uniform tension are solved.

Automatic Mesh Generation for Three-Dimensional Structures Consisting of Free-Form Surfaces (자유 곡면으로 구성되는 3차원 구조물에 대한 자동 요소 분할)

  • ;Yagawa, Genki
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.65-75
    • /
    • 1996
  • This paper describes an automatic finite element(FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid and shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional solid and shell structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

  • PDF

A Study for Dispersive Action on The Solid Particle by Stochastic Model (I) (스토캐스틱 모델 ( Stochastic Model ) 에 의한 고체입자상 의 산란작용 에 대한 연구 I)

  • 맹주성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.4
    • /
    • pp.308-314
    • /
    • 1982
  • An experimental study has been made for the dispersion phenomena by a stochastic model in a turbulent pipe flow. Local instantaneous passage of suspended solid particles were recorded in two dimensions, employing a periscopic system coupled vidicon camera. Probability density of passage was calculated. Second moment shows qualitatively that dispersive action is dependent on particle's geometric characteristics in vertical pipe flow. In case that density of the solid particles is larger than that of liquid, particles have a tendency to approach from the center of pipe to the wall, and in the contrary case the approach the center of pipe. It seems that there exists a field of radial accelerations, centrifugal or centripetal according to the sign of density difference between two phases.

Analysis model for the pneumatic solid processing system in non-uniform particle size condition (불균일 입도를 가지는 기류식 고체 처리 시스템을 위한 해석모델)

  • Choi, Donghwan;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.229-231
    • /
    • 2015
  • In pneumatic reactor, hydrodynamic relation between gas and solid is important and particle size has a significant effect on this relation. In this reason, we analyzed drying and calcine process with a corrected model by considering the effect of the particle size distribution(PSD) with different seven particle groups by particle size.

  • PDF

Heat Transfer Analysis on the Rapid Solidification Process of Atomized Metal Droplets (분무된 금속액적의 급속응고과정에 관한 열전달 해석)

  • 안종선;박병규;안상호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2404-2412
    • /
    • 1994
  • A mathematical model has been developed for predicting kinematic, thermal, and solidification histories of atomized droplets during flight. Liquid droplet convective cooling, recalescence, equilibrium-state solidification, and solid-phase cooling were taken into account in the analysis of the solidification process. The spherical shell model was adopted where the heterogeneous nucleation is initiated from the whole surface of a droplet. The growth rate of the solid-liquid interface was determined from the theory of crystal growth kinetics with undercooling caused by the rapid solidification. The solid fraction after recalescence was obtained by using the integral method. The thermal responses of atomized droplets to gas velocity, particle size variation, and degree of undercooling were investigated through the parametric studies. It is possible to evaluate the solid fraction of the droplet according to flight distance and time in terms of a dimensionless parameter derived from the overall energy balance of the system. It is also found that the solid fraction at the end of recalescence is not dependent on the droplet size and nozzle exit velocity but on the degree of subcooling.

A Study on Optimal Composition for Composite Solid Propellant under Multiple Criteria (다기준하(多基準下)의 혼성고체추진제 최적조성(混成固體推進劑 最適組成)에 관한 연구(硏究))

  • Jeong, Byeong-Hui;Kim, Gi-Bae
    • IE interfaces
    • /
    • v.1 no.1
    • /
    • pp.17-26
    • /
    • 1988
  • This paper describes a nonlinear goal programming approach to the optimal composition of composite solid propellant taking multiple characteristics into consideration synchronously. The nonlinear goal programming model with response functions, restrictions and the optimal value of each characteristic is developed using Scheffe's "Experiments with mixtures" and preference weighting system. Objective functions are described based on process, performance and assurance characteristics. The systematic approach to optimal composition in this study is proved efficient through a CTPB-AL-AP propellant which is one of composite solid propellant systems.

  • PDF

A Study on the Development of On Machine Measuring System using 3-Dimensional solid model (3차원 형상기반 기계상 측정 시스템 개발에 관한 연구)

  • Koo B. K.;Ryu J. K.;Kim S. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.3-10
    • /
    • 2002
  • In this study on machine measuring system based on solid feature was developed. This system was applied with injection mold using 3 dimensional solid modeler for verification. Developed program include pre-processor, main processor, and post processor. In pre-processor there are functions which check intersection, simulate motion of probe and calculate measuring time. Main processor generates measuring path and output NC code in Unigraphics. In post-processor functions that include evaluation of undercut or overcut and display of measuring procedure are offered. In addition analysis module for quality control of measured data on manufactured product was developed with geometric and dimensional tolerance concept. As the result developed program could get stability of system, precision of product, rapidity and cost down of manufacturing process compared with before measuring process.

  • PDF

Numerical Analysis on Semi-Solid Forging and Casting Process of Aluminum Alloys (알루미늄합금의 반용융 단조 및 주조공정에 관한 수치해석)

  • 강충길;임미동
    • Transactions of Materials Processing
    • /
    • v.6 no.3
    • /
    • pp.239-249
    • /
    • 1997
  • The behaviour of alloys in the semi-solid state strongly depends on the imposed stress state and on the morphology of the phase which can vary from dendritic to globular. To optimal net shape forging of semi-solid materials, it is important to investigate for filling phenomena in forging process of arbitrarily shaped dies. To produce a automotive part which has good mechanical property, the filling pattern according to die velocity and solid fraction distribution has to be estimated for arbitrarily shaped dies. Therefore, the estimation of filling characteristic in the forging simulation with arbitrarily shaped dies of semi-solid materials are calculated by finite element method with proposed algorithm. The proposed theoretical model and a various boundary conditions for arbitrarily shaped dies is investigated with the coupling calculation between the liquid phase flow and the solid phase deformation. The simulation process with arbitrarily shaped dies is performed to the isothermal conditions of two dimensional problems. To analysis of forging process by using semi-solid materials, a new stress-strain relationship is described, and forging analysis is performed by viscoelastic model for the solid phase and the Darcy's law for the liquid flow. The calculated results for forging force and filling limitations will be compared to experimental data. The filling simulation of simple products performed with the uniform billet temperature(584$^{\circ}C$) from the induction heating by the commercial package MAGMAsoft. The initial step of computation is the touching of semi-solid material with the end of die gate and the initial concept of proposed system just fit with the capability of MAGMAsoft.

  • PDF