• Title/Summary/Keyword: solid fat content

Search Result 120, Processing Time 0.031 seconds

Milk Conjugated Linoleic Acid (CLA) Profile and Metabolic Responses of Dairy Cows Fed with High-temperature-micro-time (HTMT) Treated Diets Containing High Quantity Extruded Soybean (ESB)

  • Lee, H.G.;Hong, Z.S.;Wang, J.H.;Xu, C.X.;Jin, Y.C.;Kim, T.K.;Kim, Y.J.;Song, M.K.;Choi, Yun.-Jaei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.11
    • /
    • pp.1504-1512
    • /
    • 2009
  • A feeding trial was conducted to examine the effect of high-temperature-micro-time (HTMT) processing of diets containing extruded soybean (ESB) in high quantity on milk fat production, metabolic responses, and the formation of conjugated linoleic acid (CLA) and trans-vaccenic acid (TVA). Twenty-one multiparous Holstein cows in mid-lactation were blocked according to milk yield in the previous lactation. Cows within each block were randomly assigned to either normal concentrate or HTMT treated diets containing ESB (7.5% HTMT-ESB and 15% HTMT-ESB). It was hypothesized that the HTMT-ESB would affect the undegradable fatty acids in the rumen and, thus, would modify the fatty acid profile of milk fat. Both 7.5% and 15% HTMT-ESB did not affect milk yield, fat, protein, lactose and solid-not-fat (SNF), but the proportion of cis-9, trans-11 CLA in milk fat was significantly increased by these treatments. Content of TVA in milk fat was not affected by HTMT-ESB. The HTMT-ESB influenced the fatty acid profile in milk fat, but there was little difference between 7.5% and 15% of supplementation. HTMT-ESB feeding significantly decreased the concentration of plasma insulin and glucose, while plasma growth hormone (GH), triglyceride (TG), non-esterified fatty acid (NEFA) and HDLcholesterol were increased by 7.5% and 15% ESB-HTMT supplementation in comparison to the control group (p<0.05). However, no significant difference was observed in plasma LDL-cholesterol, insulin like growth factor (IGF)-1, T3, T4, and leptin concentrations among treatments (p>0.05). The present results showed that cis-9, trans-11 CLA production was increased by HTMT treatment of dietary ESB without reduction of milk fat, and the unchanged milk fat and yield was assumed to be associated with the constant level of thyroid hormones, leptin, and IGF-1.

Dietary fat preference and effects on performance of piglets at weaning

  • Weng, Ruey-Chee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.6
    • /
    • pp.834-842
    • /
    • 2017
  • Objective: An experiment was to evaluate the interplay of dietary lipid sources and feeding regime in the transition from sow milk to solid food of abruptly weaned piglets. Methods: Soon after weaning, 144 piglets were selected and were trained over a 15 day period to experience gradually reducing dietary fat content from 12% to 6% for lard (L), soybean oil (S), and coconut oil (C) and their feeding behavior and diet preference then tested in a behavior observation experiment. Another 324 weaned piglets were used in three consecutive feeding experiments to measure the effect of different dietary fats on performance and feed choice in the four weeks after abrupt weaning. The lipid sources were used as supplements in a 3% crude fat corn/soya basal diet, with 6% of each being included to form diets 9C, 9S, and 9L respectively, and their effects on performance measured. Combinations of these diets were then further compared in fixed blends or free choice selection experiments. Results: Piglets pre-trained to experience reducing lipid inclusion showed different subsequent preferences according to lipid source, with a preference for lard at 9%, soybean oil at 3%, and coconut oil at 6% inclusion rate (p<0.001). Following abrupt weaning, whilst after 4 weeks those fed 9C had the heaviest body weights (18.13 kg, p = 0.006). Piglets fed a fixed 1:1 blend of 9C+9S had a poorer feed conversion ratio (FCR = 1.80) than those fed a blend of 9C+9L (FCR = 1.4). The 9C and 9L combination groups showed better performance in both fixed blend and free choice feeding regimes. Conclusion: After abrupt weaning, they still have dependence on high oleic acid lipids as found in sow milk. A feeding regime offering free choice combination of lipids might give the possibility for piglets to cope better with the transition at weaning, but further research is needed.

Rheological Properties of Soymilk and Curd Prepared with Micronized Full-fat Soyflour (콩미세분말로 제조된 두유 및 전두부의 물성)

  • 심재진;서지현;소한섭;유병승;이삼빈
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.1
    • /
    • pp.75-81
    • /
    • 2003
  • Rheological properties of micronized full-fat soyflour (MFS ) milk were determined according to solid content, heat-treatment and type of coagulants. Heat-treated MFS milk showed a pseudoplastic flow pattern. The consistency and flow index of heated MFS milk was greatly affected by increasing the concentration of MFS and/or soy protein isolate (SPI). Apparent viscosity of MFS milk was gradually decreased by heating below 6$0^{\circ}C$, but was drastically increased by raising temperature further. Addition of coagulants and SPI resulted in dropping the temperature that allows to increase apparent viscosity drastically. A coagulant for MFS tofu was formulated based on the gelling Property of a single coagulant. The textural properties of MFS tofu were improved using 7.1% total protein fortified with SPI.

Impact of Seasonal Conditions on Quality and Pathogens Content of Milk in Friesian Cows

  • Zeinhom, Mohamed M.A.;Abdel Aziz, Rabie L.;Mohammed, Asmaa N.;Bernabucci, Umberto
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.8
    • /
    • pp.1207-1213
    • /
    • 2016
  • Heat stress negatively affects milk quality altering its nutritive value and cheese making properties. This study aimed at assessing the impact of seasonal microclimatic conditions on milk quality of Friesian cows. The study was carried out in a dairy farm from June 2013 to May 2014 at Beni-Suef province, Egypt. Inside the barn daily ambient temperature and relative humidity were recorded and used to calculate the daily maximum temperature-humidity index (mxTHI), which was used as indicator of the degree of heat stress. The study was carried out in three periods according to the temperature-humidity index (THI) recorded: from June 2013 to September 2013 (mxTHI>78), from October 2013 to November 2013 (mxTHI 72-78) and from December 2013 to April 2014 (mxTHI<72). Eighty Friesian lactating dairy cows were monitored in each period. The three groups of cows were balanced for days in milk and parity. Milk quality data referred to somatic cell count, total coliform count (TCC), faecal coliform count (FCC), Escherichia coli count, percentage of E. coli, and Staphylococcus aureus, percentage of fat, protein, lactose, total solid and solid non-fat. Increasing THI was associated with a significant decrease in all milk main components. An increase of TCC, FCC, and E. coli count from mxTHI<72 to mxTHI>78 was observed. In addition, the isolation rate of both S. aureus and E. coli increased when the mxTHI increased. The results of this study show the seriousness of the negative effects of hot conditions on milk composition and mammary gland pathogens. These facts warrant the importance of adopting mitigation strategies to alleviate negative consequences of heat stress in dairy cows and for limiting related economic losses.

Optimization of the Spreadable Modified Butter Manufacturing by Response Surface Methodology

  • Suh, Mun Hui;Lee, Keon Bong;Baick, Seung Chun
    • Food Science of Animal Resources
    • /
    • v.32 no.6
    • /
    • pp.783-788
    • /
    • 2012
  • The aim of this study was to optimize the manufacturing condition of spreadable modified butter by RSM. Based on the central composite design, the degree of optimization was expressed as a SFC as a dependent variable (Y, %) determined by NMR with 23 experimental groups. Three independent variables were the contents of butter ($X_1$, 35-75%), the contents of grape seed oil ($X_2$, 15-35%), and the contents of hydrogenated soybean oil ($X_3$, 0-4%). As the result, SFC at $10^{\circ}C$ was ranged from 32.37 to 42.76%. In addition, the regression coefficients were calculated for SFC at $10^{\circ}C$ by RSREG. The regression model equation for the SFC was $Y=39.18-0.04X_1X_3$. Consequently, the optimal contents for manufacturing spreadable modified butter were determined as 55.18% for butter, 40.78% for grape seed oil, and 4.08% for hydrogenated soybean oil, respectively. The predicted response value for SFC at $10^{\circ}C$ was 30.20%, comparable to the actual experimental SFC value as 29.85%. Finally hardness and spreadability in reference butter and spreadable modified butter produced under the optimal conditions was measured. The hardness in spreadable modified butter was 31.80 N as compared to 69.92 N in reference butter. The spreadability in spreadable modified butter was 5.6 point as compared to reference butter. This difference may be due to the contents of solid fat by butter and hydrogenated soybean oil. This study showed that the SFC value at $10^{\circ}C$ could be a suitable indicator for the manufacturing spreadable modified butter to predict important attributes such as mouth feel, hardness and spreadability.

Effects of Feeding Extruded Soybean, Ground Canola Seed and Whole Cottonseed on Ruminal Fermentation, Performance and Milk Fatty Acid Profile in Early Lactation Dairy Cows

  • Chen, P.;Ji, P.;Li, Shengli
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.2
    • /
    • pp.204-213
    • /
    • 2008
  • Four ruminally cannulated Holstein cows averaging 43 days in milk (DIM) were used in a $4{\times}4$ Latin square to determine the effect of feeding extruded soybean, ground canola seed and whole cottonseed on ruminal fermentation and milk fatty acid profile. One hundred and twenty lactating Holstein cows, 58 (${\pm}31$) DIM, were assigned to four treatments in a completely randomized block design to study the effects of the three types of oilseeds on production parameters and milk fatty acid profile. The four diets were a control diet (CON) and three diets in which 10% extruded soybean (ESB), 5% ground canola seed (GCS) and 10% whole cottonseed (WCS) were included, respectively. Diets consisted of concentrate mix, corn silage and Chinese wild rye and were balanced to similar concentrations of CP, NDF and ADF. Ruminal fermentation results showed that ruminal fermentation parameters, dry matter intake and milk yield were not significantly affected by treatments. However, compared with the control, feeding cows with the three oilseed diets reduced C14:0 and C16:0 and elevated C18:0 and C18:1 concentrations in milk, and feeding ESB increased C18:2 and cis9, trans11 conjugated linoleic acid (CLA). Production results showed that feeding ESB tended to increase actual milk yield (30.85 kg/d vs. 29.29 kg/d) and significantly decreased milk fat percentage (3.53% vs. 4.06%) compared with CON. Milk protein (3.41%) and solid non-fat (13.27%) from cows fed WCS were significantly higher than from cows fed CON (3.24% and 12.63%, respectively). Milk urea N concentrations from cows fed the ESB (164.12 mg/L) and GCS (169.91 mg/L) were higher than cows fed CON (132.31 mg/L). However, intake of DM, 4% fat corrected milk, energy corrected milk, milk fat and protein yields, milk lactose percentage and yield, somatic cell count and body condition score were not affected by different treatments. The proportion of medium-chain fatty acid with 14 to 16 C units in milk was greatly decreased in cows fed ESB, GCS and WCS. Feeding ESB increased the concentration in milk of C18:1, C18:2, C18:3 and cis9, trans11-CLA content by 16.67%, 37.36%, 95.24%, 72.22%, respectively, feeding GCS improved C18:0 and C18:1 by 17.41% and 33.28%, respectively, and feeding WCS increased C18:0 by 31.01% compared with feeding CON. Both ruminal fermentation and production trial results indicated that supplementation of extruded soybean, ground canola seed and whole cottonseed could elevate the desirable poly- and monounsaturated fatty acid and decrease the medium chain fatty acid and saturated fatty acid content of milk fat without negative effects on ruminal fermentation and lactation performance.

Effects of Aspergillus oryzae Fermentation Extract on Performance of Lactating Cows in the Summer and Winter in Taiwan

  • Chiou, Peter Wen-Shyg;Chen, Chao-Ren;Yu, Bi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.3
    • /
    • pp.382-389
    • /
    • 2002
  • The aims of this study is to evaluate the effect of Aspergillus oryzae Fermentation Extract (AFE) on the performance of lactating cows in summer (May to July) and winter (December to February). The experiment was a completely randomized design (CRD) and dietary treatments were 1) basal diet without AFE, 2) basal plus 3 g/d AFE into the basal total mixed ration (TMR), 3) basal plus 45.4 mg AFE/kg the ensiling corn silage and 4) AFE inclusion in silage and TMR. Twenty-eight cows from each trial were selected and randomly allocated into the four treatment groups, confined in individual pens, and fed ad libitum for 8 weeks in both seasons of feeding trials. Results showed that AFE inclusion in corn silage significantly improved DM intake by 4.4% and milk yield by 3.1% (p<0.05) during summer. In the winter season, AFE inclusion in the diet significantly improved milk yield by 10%. Direct addition of AFE to the TMR even further significantly improved milk yield over the addition through corn silage by 7.4% in winter (p<0.05). An additive effect of AFE inclusion into TMR and through corn silage was also demonstrated in the winter-feeding. AFE inclusion however, did not improve DM intake during the winter trial. In the summer trial, inclusion of AFE showed an adverse effect on the percentage of milk fat, but did not impact on the milk fat yield. Adding AFE through corn silage showed a trend towards alleviating the negative effects of milk fat from direct AFE inclusion in TMR. The similar trend occurred in the winter trial. The inclusion of AFE through corn silage significantly lowered the milk protein content over direct AFE addition, but did not significantly impacted the milk protein yield in summer. AFE supplementation during the winter season significantly increased milk protein content. Adding AFE to the corn silage significantly increased milk protein content over direct AFE addition in winter although inclusion of AFE significantly decreased total milk solid content in the summer (p<0.005). During the winter season, inclusion of AFE required less DM to produce a unit of milk. Inclusion of AFE into corn silage required less DM, energy and protein to produce a unit of milk. But inclusion of AFE did not alleviate heat stress on the lactating cows.

Development and Characterization of Trans Free Margarine Stock from Lipase-Catalyzed Interesterification of Avocado and Palm Oils (팜유와 아보카도유로부터 효소적 interesterification을 통한 trans free margarine stock 제조 및 이화학적 특성 연구)

  • Lee, Yun-Jeung;Lee, Ki-Teak
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.231-237
    • /
    • 2009
  • Trans free margarine stock (TFMS) was produced by lipase-catalyzed synthesis of fully hydrogenated soybean oil (FHSBO), avocado oil (AO) and palm oil (PO). A blend of FHSBO, AO, and PO with a 1:5:4 (30:150:120 g, respectively) ratio was interesterified with lipozyme RM IM(from Rhizomucor miehei) in a 1 L-batch type reactor at 65 for 12 hr, and the physicochemical and melting properties of TFMS were compared with commercial margarine. The solid fat content (%) of the TFMS was analyzed at 25, 30, and $35^{\circ}C$, respectively, while its melting point was $37.8^{\circ}C$. The trans fatty acid content of the TFMS was below 0.1%. It also had acid, saponification, and iodine values of 0.4, 173.9, and 58.6, respectively. In HPLC chromatograms of the TFMS, newly synthesized peaks of triacylglycerol molecules were observed by using reverse-phase HPLC with evaporative light-scattering detection. Normal-phase HPLC with UV detection was used to quantify tocopherols in the TFMS, indicating that its ${\alpha}-$, ${\gamma}-$ and ${\delta}$-tocopherol contents were 5.7, 2.1, and 1.7 mg/100 g, respectively.

Optimization of Interesterification Reaction for the Continuous Production of trans-Free Fat in a Packed Bed Enzyme Bioreactor with Immobilized Lipase (고정화 리파제를 이용한 충진형 효소생물반응기 내에서의 무-트랜스 유지 연속 생산을 위한 에스테르 교환 반응의 최적화)

  • Kim, Sang-Woo;Park, Kyung-Min;Ha, Jae-Uk;Lee, Jae-Hwan;Chang, Pahn-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.173-178
    • /
    • 2009
  • Epidemiological studies showed that high trans-fat consumption is closely associated with getting the risks of cardiovascular disease. The objective of this study was to produce trans-free fat through lipase-catalyzed interesterification, as a substitute for the cream margarine commonly used in industry. Optimum conditions for interesterification in a packed bed enzyme bioreactor (PBEB) were determined using response surface methodology (RSM) based on central composite design. Three kinds of reaction variables were chosen, such as substrate flow rate (0.4-1.2 mL/min), reaction temperature (60-70$^{\circ}C$), and ratio of fully hydrogenated canola oil (FHCO, 35-45%) to evaluate their effects on the degree of interesterification. Optimum conditions from the standpoint of solid fat content (SFC) were found to be as follows: 0.4 mL/min flow rate, 64.7$^{\circ}C$ reaction temperate, and 42.8% (w/w) ratio of FHCO, respectively. The half-life of immobilized lipase in PBEB with two stages at 60$^{\circ}C$ ($1^{st}$ stage) and 55$^{\circ}C$ ($2^{nd}$ stage) was about more than 30 days as estimated by extrapolating the incubation time course of tristearoyl glycerol (TS) conversion, whereas the half-life of the enzyme in PBEB with single stage at 65$^{\circ}C$ was only about 15 days. Finally, the results from SFC analysis suggest that trans-free fat produced in this study seems to be a suitable substitute for the cream margarine commonly used in industry.

Rapid Soybean-Milk Preparation with Dehulled Soybean and Its Quality Properties (탈피대두를 이용한 신속 두유 제조 및 품질 특성)

  • Kim, Jin-Sol;Han, In-Bom;Jung, Ui-Hwan;Cha, Seung-Hyeon;Hyun, Tae Kyung;Kim, Soon-Hwan;Ha, Jin-Seok;Jang, Keum-Il
    • The Korean Journal of Food And Nutrition
    • /
    • v.32 no.6
    • /
    • pp.643-650
    • /
    • 2019
  • The purpose of this study was to investigate the quality of dehulled soybean (DHSB), and the rapid preparation possibility of soybean milk with DHSB (SM-DHSB), and then the quality of SM-DHSB. In DHSB, the moisture content decreased, the crude protein, crude fat, minerals, and carbohydrate contents increased, and the isoflavone (daidzein, genistein and glycitein) content was similar to that of soybean (SB). The water absorption rate of DHSB for soybean milk preparation was higher than that of SB. In the results of SM-DHSB and soybean milk (SM) qualities, the crude protein content, total solid content, and the viscosity of SM-DHSB were higher, the yield and the proximate composition (except crude protein) were similar, and the Biji production rate, and total dietary fiber content of SM-DHSB were lower compared to the SM. In terms of the isoflavone contents of SM-DHSB, daidzein and genistein content were similar, and glycitein content was lower compared with the SM. Consequently, these results suggest the possible use of DHSB for rapid SM-DHSB preparation, because the soaking time was decreased by the high water absorption rate of DHSB in the SM preparation, and the quality of SM-DHSB improved compared to those of the SM.