• Title/Summary/Keyword: solid elements

Search Result 651, Processing Time 0.026 seconds

Synthesis, Chemical Characterization and Catalytic Activity of Transition Metal Complexes Having Imine Based Nitrogen Donor Ligand (이민에 기초한 질소주개 리간드의 전이금속 착물 합성, 화학적 특성 및 촉매활성)

  • Hussain, Raja Azadar;Badshah, Amin;Asma, Maliha
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.1
    • /
    • pp.23-26
    • /
    • 2010
  • A Schiff base ligand (Z)-N-((Z)-2-(sec-butylimino)-1,2-diphenylethylidene)butan-2-amine was synthesized by condensation of benzil with sec-butyl amine. Complexation of the ligand was carried out with first row transition elements, manganese(II) and nickel(II). Ligand and complexes were characterized by FTIR, elemental analysis and thermogravimetric analysis in solid state and by NMR ($^1H,\;^{13}C$) in solution form. Both the complexes demonstrate good catalytic activity for butadiene oligomerization under mild conditions with methylaluminoxane (MAO) as co-catalyst.

Nonlinear finite element analysis of top- and seat-angle with double web-angle connections

  • Kishi, N.;Ahmed, A.;Yabuki, N.;Chen, W.F.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.2
    • /
    • pp.201-214
    • /
    • 2001
  • Four finite element (FE) models are examined to find the one that best estimates moment-rotation characteristics of top- and seat-angle with double web-angle connections. To efficiently simulate the real behavior of connections, finite element analyses are performed with following considerations: 1) all components of connection (beam, column, angles and bolts) are discretized by eight-node solid elements; 2) shapes of bolt shank, head, and nut are precisely taken into account in modeling; and 3) contact surface algorithm is applied as boundary condition. To improve accuracy in predicting moment-rotation behavior of a connection, bolt pretension is introduced before the corresponding connection moment being surcharged. The experimental results are used to investigate the applicability of FE method and to check the performance of three-parameter power model by making comparison among their moment-rotation behaviors and by assessment of deformation and stress distribution patterns at the final stage of loading. This research exposes two important features: (1) the FE method has tremendous potential for connection modeling for both monotonic and cyclic loading; and (2) the power model is able to predict moment-rotation characteristics of semi-rigid connections with acceptable accuracy.

A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel Part II : Proposal of a method to use shell element model

  • Kim, Jae Woong;Jang, Beom Seon;Kang, Sung Wook
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.245-256
    • /
    • 2014
  • I-core sandwich panel that has been used more widely is assembled using high power $CO_2$ laser welding. Kim et al. (2013) proposed a circular cone type heat source model for the T-joint laser welding between face plate and core. It can cover the negative defocus which is commonly adopted in T-joint laser welding to provide deeper penetration. In part I, a volumetric heat source model is proposed and it is verified thorough a comparison of melting zone on the cross section with experiment results. The proposed model can be used for heat transfer analysis and thermal elasto-plastic analysis to predict welding deformation that occurs during laser welding. In terms of computational time, since the thermal elasto-plastic analysis using 3D solid elements is quite time consuming, shell element model with multi-layers have been employed instead. However, the conventional layered approach is not appropriate for the application of heat load at T-Joint. This paper, Part II, suggests a new method to arrange different number of layers for face plate and core in order to impose heat load only to the face plate.

A Study on FEM of the Bearing Girder in the Large Vessel Engine Structure (선박 엔진 베어링 거더의 유한요소해석에 관한 연구)

  • Park, Young-Joon;Shim, Mun-Bo;Kim, Hyun-Jun;Suh, Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1877-1885
    • /
    • 2004
  • The purpose of this study is to show pressure distribution of the bearing girder in large vessel engine and to consider finite elements analysis using the pressure distribution. Various kinds of the exciting forces act on a bearing girder. And at the same time, it is necessary to consider the contact between a crankshaft and a bearing girder because a bearing girder supports a crankshaft. However it is to need the computer resource with much time if we apply the contact element to a complex solid model and perform a repeated analysis. Thus we have accomplished a contact analysis in the simplistic finite element model of the bearing girder. After that we take a pressure distribution, and apply this to actual finite element model and accomplish finite element analysis. The result of stresses and strains has been produced using superposition method. The concept of superposition method is to find the resultant deflection of several loads acting on a member as the sum of contributions of individual loads. The results were compared with measured results and were verified to be accurate. Resulting analyzed strain favorably coincides with measured strain. The experiment result justifies this paper method.

Numerical Analysis of Viscoelastic Cylinders with Mode I Cracks (점탄성 원통의 모드 I 균열 해석)

  • Sim Woo-Jin;Oh Guen
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.259-269
    • /
    • 2006
  • In this paper, the stress intensity factor, energy release rate and crack opening displacement are computed using the finite element method for axisymmetric viscoelastic cylinders with the penny-shaped and circumferential cracks. The triangular elements with quarter point nodes are used to describe the stress singularity around the crack edge. The analytical solutions are also derived by using the elastic-viscoelastic correspondence principle and compared with the numerical results to show the validity and accuracy of the presented method. Viscoelastic materials are assumed to behave elastically in dilatation and like a three-parameter standard linear solid.

Punching shear behavior of recycled aggregate concrete

  • Dan, Saikat;Chaudhary, Manpreet;Barai, Sudhirkumar V.
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.321-333
    • /
    • 2018
  • Flat-slabs, being a significant structural component, not only reduce the dead load of the structure but also reduce the amount of concrete required for construction. Moreover the use of recycled aggregates lowers the impact of large scale construction to nearby ecosystems. Recycled aggregate based concrete being a quasi-brittle material shows enormous cracking during failure. Crack growth in flat-slabs is mostly in sliding mode (Mode II). Therefore sufficient sections need to be provided for resistance against such failure modes. The main objective of the paper is to numerically determine the ultimate load carrying capacity of two self-similar flat-slab specimens and validate the results experimentally for the natural aggregate as well as recycled aggregate based concrete. Punching shear experiments are carried out on circular flat-slab specimen on a rigid circular knife-edge support built out of both normal (NAC) and recycled aggregate concrete (RAC, with full replacement). Uniaxial compression and bending tests have been conducted on cubes, cylinders and prisms using both types of concrete (NAC and RAC) for its material characterization and use in the numerical scheme. The numerical simulations have been conducted in ABAQUS (a known finite element software package). Eight noded solid elements have been used to model the flat slab and material properties have been considered from experimental tests. The inbuilt Concrete Damaged Plasticity model of ABAQUS has been used to monitor crack propagation in the specimen during numerical simulations.

Enrichment of valuable elements from vanadium slag using superconducting HGMS technology

  • He, Sai;Yang, Chang-qiao;Li, Su-qin;Zhang, Chang-quan
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.1
    • /
    • pp.17-21
    • /
    • 2017
  • Vanadium slags is a kind of vanadiferous solid waste from steelmaking process. It not only occupies land, pollutes environment, but also leads to waste of resources. Based on the difference of magnetic susceptibility of different particles caused by their chemical and physical properties from vanadium slag, a new technology, superconducting high gradient magnetic separation was investigated for separation and extraction of valuable substances from vanadium slag. The magnetic concentrate was obtained under optimal parameters, i.e., a particle size -200 mesh, a magnetic flux density of 0.8 T, a slurry concentration of 5 g/L, an amount of steel wools of 25 g and a slurry flow velocity of 2 L/min. The content of $Fe_2O_3$ in concentrate could be increased from 39.6% to 55.0% and $V_2O_5$ from 2.5% to 4.0%, respectively. The recovery rate is up to 42.9%, and the vanadium slag has been effectively reused.

A nonlinear model for ultimate analysis and design of reinforced concrete structures

  • Morfidis, Konstantinos;Kiousis, Panos D.;Xenidis, Hariton
    • Computers and Concrete
    • /
    • v.14 no.6
    • /
    • pp.695-710
    • /
    • 2014
  • This paper presents a theoretical and computational approach to solve inelastic structures subjected to overloads. Current practice in structural design is based on elastic analysis followed by limit strength design. Whereas this approach typically results in safe strength design, it does not always guarantee satisfactory performance at the service level because the internal stiffness distribution of the structure changes from the service to the ultimate strength state. A significant variation of relative stiffnesses between the two states may result in unwanted cracking at the service level with expensive repairs, while, under certain circumstances, early failure may occur due to unexpected internal moment reversals. To address these concerns, a new inelastic model is presented here that is based on the nonlinear material response and the interaction relation between axial forces and bending moments of a beam-column element. The model is simple, reasonably accurate, and computationally efficient. It is easy to implement in standard structural analysis codes, and avoids the complexities of expensive alternative analyses based on 2D and 3D finite-element computations using solid elements.

Detailed Finite Element Analysis of Full-scale Four-story Steel Frame Structure subjected to Consecutive Ground Motions

  • Tagawa, Hiroyuki;Miyamura, Tomoshi;Yamashita, Takuzo;Kohiyama, Masayuki;Ohsaki, Makoto
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.65-73
    • /
    • 2015
  • Detailed finite element (FE) analyses of a full-scale four-story steel frame structure, subjected to consecutive 60% and 100% excitations from the JR Takatori records during the 1995 Hyogoken-Nanbu earthquake, are conducted using E-Simulator. The four-story frame was tested at the largest shake-table facility in the world, E-Defense, in 2007. E-Simulator is a parallel FE analysis software package developed to accurately simulate structural behavior up to collapse by using a fine mesh of solid elements. To reduce computational time in consecutive dynamic time history analyses, static analysis with gravity force is introduced to terminate the vibration of the structure during the analysis of 60% excitation. An overall sway mechanism when subjected to 60% excitation and a story mechanism resulting from local buckling of the first-story columns when subjected to 100% excitation are simulated by using E-Simulator. The story drift response to the consecutive 60% and 100% excitations is slightly smaller than that for the single 100% excitation.

Transient Heat Transfer and Structural Analyses for the Turbopump Turbine of a Liquid Rocket Engine (액체 로켓 터보 펌프 터빈의 천이 열전달 및 구조 해석)

  • Yoo, Jae-Han;Choi, Ji-Hoon;Lee, In;Han, Jae-Hung;Jeon, Seong-Min;Kim, Jin-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.58-65
    • /
    • 2004
  • Thermal and structural finite element analyses were performed for the turbopump turbine bladed disk model with shroud of a liquid rocket engine. The only 1/80 part model was analyzed which consists of 3D eight node isoparametric solid elements. The applied loading history consists of a startup condition with a thermal spike and a steady state. Heat transfer coefficient on the blade was predicted using the commercial Navier-Stokes solver, Fluent. Transient thermal responses during startup and steady states were calculated using a 3D finite element code developed. Maximum stress and shroud tip displacement under the influence of centrifugal and thermal loading were also determined.