• Title/Summary/Keyword: solid density

Search Result 1,203, Processing Time 0.022 seconds

Electronic Structure and Chemical Bonding of La7Os4C9 (La7Os4C9의 전자구조와 화학결합)

  • Kang, Dae-Bok
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.266-271
    • /
    • 2009
  • In the recently synthesized rare earth transition metal carbide $La_7O_{s4}C_9$ one finds one-dimensional organometallic $[O_{s4}C_9]^{21-}$ polymers embedded in a $La^{3+}$ ionic matrix. The electronic structure of the polymeric $[O_{s4}C_9]^{21-}$ chain was investigated by density of states (DOS) and crystal orbital overlap population (COOP), using the extended Huckel algorithm. A fragment molecular orbital analysis is used to study the bonding characteristics of the $C_2$ units in $La_7O_{s4}C_9$ containing $C_2$ units and single C atoms as well. The title compound contains partially filled Os and carbon bands leading to metallic conductivity. As the observed distances already indicated, the calculations show extensive Os-C interactions. The C-C bond distance in the diatomic $C_2$ units ($d_{C-C}$=131 pm) in the solid is significantly increased relative to $${C_2}^{2-}$$ or acetylene, because antibonding $1{\pi}_g$ orbitals are partially filled by the Os-$C_2(1\;{\pi}_g)$ bonding contribution found at and below the Fermi level.

Single Crystal Growth of $(TeO_2)$ by CZ Technique (용액인상법에 의한 파라텔루라이트 $(TeO_2)$ 단결정 육성)

  • Sohn, Wook;Jang, Young-Nam;Bae, In-Kook;Chae, Soo-Chun;Moon, H-Soo
    • Korean Journal of Crystallography
    • /
    • v.6 no.2
    • /
    • pp.141-157
    • /
    • 1995
  • Single crystals of TeO2 with large diameter were grown by Czochralski technique with auto-diameter control system. The ratio of crystal to crucible was 60-70%. The effect of critical pulling and rotation rate on the crystal quality was studied. Optimum growth parameters for high quality crystal pulling rate was less than 1.2 mm/hr. The solid-liquid interface was convex at the rotation rate of 10-23 rpm and concave at the rotation rate of more than 25 rpm, depending on the size of crystal and crucible. The platinum concentration in the melts is one of the main factors of the constitutional supercooling and thus the bubble entrapment in the growing crystal. Growth axis was confirmed to {110} direction during the whole growth procedure. Infrared spectrometric study and dislocation density measurment by chemical etching method on the grown crystal were performed. Finally, the reasons of cooperation of striations, inclusions, and optical inhomogeneities were discussed.

  • PDF

Synergistic Effect of Nitrogen and Molybdenum on Localized Corrosion of Stainless Steels

  • Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.20-28
    • /
    • 2010
  • According to the bipolar model, ion selectivity of some species in the passive film is important factor to control the passivation. An increase of cation selectivity of outer layer of the passive film can stabilize the film and improves the corrosion resistance. Therefore, the formation and roles of ionic species in the passive film should be elucidated. In this work, two types of solution (hydrochloric or sulfuric acid) were used to test high N and Mo-bearing stainless steels. The objective of this work was to investigate the formation of oxyanions in the passive film and the roles of oxyanions in passivation of stainless steel. Nitrogen exists as atomic nitrogen, nitric oxide, nitro-oxyanions (${NO_x}^-$), and N-H species, not nitride in the passive film. Because of its high mobility, the enriched atomic nitrogen can act as a reservoir. The formation of N-H species buffers the film pH and facilitates the formation of oxyanions in the film. ${NO_x}^-$ species improve the cation selectivity of the film, increasing the oxide content and film density. ${NO_x}^-$ acts similar to a strong inhibitor both in the passive film and at active sites. This facilitates the formation of chromium oxide. Also, ${NO_x}^-$ can make more molybdate and nitric oxide by reacting with Mo. The role of Mo addition on the passivation characteristics of stainless steel may differ with the test environment. Mo exists as metallic molybdenum, molybdenum oxide, and molybdate and the latter facilitates the oxide formation. When nitrogen and molybdenum coexist in stainless steel, corrosion resistance in chloride solutions is drastically increased. This synergistic effect of N and Mo in a chloride solution is mainly due to the formation of nitro-oxyanions and molybdate ion. Oxyanions can be formed by a 'solid state reaction' in the passive film, resulting in the formation of more molybdate and nitric oxide. These oxyanions improve the cation selectivity of the outer layer and form more oxide and increase the amount of chromium oxide and the ratio of $Cr_2O_3/Cr(OH)_3$ and make the film stable and dense.

The effect of the thread depth on the mechanical properties of the dental implant

  • Lee, Sun-Young;Kim, Sung-Jun;An, Hyun-Wook;Kim, Hyun-Seung;Ha, Dong-Guk;Ryo, Kyung-Ho;Park, Kwang-Bum
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.115-121
    • /
    • 2015
  • PURPOSE. This study aimed to evaluate the effect of implant thread depth on primary stability in low density bone. MATERIALS AND METHODS. The insertion torque was measured by inserting Ti implants with different thread depths into solid rigid polyurethane blocks (Sawbones) with three different bone densities ($0.16g/cm^3$, $0.24g/cm^3$, and $0.32g/cm^3$). The insertion torque value was evaluated with a surgical engine. The static compressive strength was measured with a universal testing machine (UTM) and the Ti implants were aligned at $30^{\circ}$ against the loading direction of the UTM. After the static compressive strength test, the Ti implants were analyzed with a Measurescope. RESULTS. The Ti implants with deeper thread depth showed statistically higher mean insertion torque values (P<.001). Groups A and group B had similar maximum static compressive strengths, as did groups C and D (P>.05). After the static compressive strength, the thread shape of the Ti implants with deeper thread depth did not show any breakage but did show deformation of the implant body and abutment. CONCLUSION. The implants with deeper thread depth had higher mean insertion torque values but not lower compressive strength. The deep threads had a mechanical stability. Implants with deeper thread depth may increase the primary stability in areas of poor quality bone without decreasing mechanical strength.

Physical stability of arginine-glycine-aspartic acid peptide coated on anodized implants after installation

  • Huh, Jung-Bo;Lee, Jeong-Yeol;Jeon, Young-Chan;Shin, Sang-Wan;Ahn, Jin-Soo;Ryu, Jae-Jun
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.84-91
    • /
    • 2013
  • PURPOSE. The aim of this study was to evaluate the stability of arginine-glycine-aspartic acid (RGD) peptide coatings on implants by measuring the amount of peptide remaining after installation. MATERIALS AND METHODS. Fluorescent isothiocyanate (FITC)-fixed RGD peptide was coated onto anodized titanium implants (width 4 mm, length 10 mm) using a physical adsorption method (P) or a chemical grafting method (C). Solid Rigid Polyurethane Foam (SRPF) was classified as either hard bone (H) or soft bone (S) according to its density. Two pieces of artificial bone were fixed in a customized jig, and coated implants were installed at the center of the boundary between two pieces of artificial bone. The test groups were classified as: P-H, P-S, C-H, or C-S. After each installation, implants were removed from the SRPF, and the residual amounts and rates of RGD peptide in implants were measured by fluorescence spectrometry. The Kruskal-Wallis test was used for the statistical analysis (${\alpha}$=0.05). RESULTS. Peptide-coating was identified by fluorescence microscopy and XPS. Total coating amount was higher for physical adsorption than chemical grafting. The residual rate of peptide was significantly larger in the P-S group than in the other three groups (P<.05). CONCLUSION. The result of this study suggests that coating doses depend on coating method. Residual amounts of RGD peptide were greater for the physical adsorption method than the chemical grafting method.

Quality Improvement of Recycled Fine Aggregate by Neutralization Reaction in Water (습식 중화반응에 의한 순환 잔골재의 품질 향상)

  • Kim, Ha-Suk;Kim, Jin-Man;Sun, Joung-Soo;Bae, Kee-Sun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.146-151
    • /
    • 2015
  • Recycled aggregate by the recycling construction waste has a lot of advantage such as the developing the alternative resource and protecting of environment. However, recycled aggregate is used as the low quality grade, because it is difficult to remove old mortar from aggregate. To use the recycled aggregate as high quality grade, it is important to develop the technology to produce the high quality recycled aggregate. To manufacture the high quality recycled aggregate, old mortar attached on the aggregates should be removed efficiently. Therefore, in this study, we suggested the optimum condition to remove old mortar effectively using sulfuric acid and low speed wet rotary mill for high quality recycled fine aggregate. The results shows that the recycled aggregate satisfy on the standards of KS F 2573 in density, absorption and solid volume, when adequate condition of sulfuric mole ratio and aggregate ratio are make.

Preparation of Spherical Li4Ti5O12 and the Effect of Y and Nb Doping on the Electrochemical Properties as Anode Material for Lithium Secondary Batteries (리튬이온이차전지용 구형 Li4Ti5O12 음극 합성 및 Y와 Nb 도핑에 따른 전기화학적 특성)

  • Ji, Mi-Jung;Kwon, Yong-Jin;Kim, Eun-Kyung;Park, Tae-Jin;Jung, Sung-Hun;Choi, Byung-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.659-662
    • /
    • 2012
  • Yttrium (Y) and niobium (Nb) doped spherical $Li_4Ti_5O_{12}$ were synthesized to improve the energy density and electrochemical properties of anode material. The synthesized crystal was $Li_4Ti_5O_{12}$, the particle size was less than $1{\mu}m$ and the morphology was spherical and well dispersed. The Y and Nb optimal doping amounts were 1 mol% and 0.5 mol%, respectively. The initial capacity of the dopant discharge and charge capacity were respectively 149mAh/g and 143 mAh/g and were significantly improved compared to the undoped condition at 129 mAh/g. Also, the capacity retention of 0.2 C/5 C was 74% for each was improved to 94% and 89%. It was consequently found that Y and Nb doping into the $Li_4Ti_5O_{12}$ matrix reduces the polarization and resistance of the solid electrolyte interface (SEI) layer during the electrochemical reaction.

Synthesis and Sintering Behavior of Zr2WP2O12 Ceramics (Zr2WP2O12 세라믹스의 합성과 소결거동 연구)

  • Kim, Yong-Hyeon;Kim, Nam-Ok;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.586-591
    • /
    • 2012
  • $Zr_2WP_2O_{12}$ powder, which has a negative thermal expansion coefficient, was synthesized by a solid-state reaction with $ZrO_2$, $WO_3$ and $NH_4H_2PO_4$ as the starting materials. The synthesis behavior was dependent on the solvent media used in the wet mixing process. The $Zr_2WP_2O_{12}$ powder prepared with a solvent consisting of D. I. water was fully crystallized at $1200^{\circ}C$, showing a sub-micron particle size. According to the results obtained from a thermal analysis, a $ZrP_2O_7$ was synthesized at a low temperature of $310^{\circ}C$, after which it was reacted with $WO_3$ at $1200^{\circ}C$. A new sintering additive, $Al(OH)_3$, was applied for the densification of the $Zr_2WP_2O_{12}$ powders. The cold isostatically pressed samples were densified with 1 wt% $Al(OH)_3$ additive or more at $1200^{\circ}C$ for 4 h. The main densification mechanism was liquid-phase sintering due to the liquid which resulted from the reaction with amorphous or unstable $Al_2O_3$ and $WO_3$. The densified $Zr_2WP_2O_{12}$ ceramics showed a relative density of 90% and a negative thermal expansion coefficient of $-3.4{\times}10^{-6}/^{\circ}C$. When using ${\alpha}-Al_2O_3$ as the sintering agent, densification was not observed at $1200^{\circ}C$.

Fabrication and Characterization of Biphasic Calcium Phosphate Scaffolds with an Unidirectional Macropore Structure Using Tertiary-Butyl Alcohol-Based Freeze-Gel Casting Method (동결-젤 주조 공정 기반 삼차부틸알코올을 이용한 단일방향 기공구조를 가지는 이상인산칼슘 세라믹 지지체의 제조 및 특성평가)

  • Kim, Kyeong-Lok;Ok, Kyung-Min;Kim, Dong-Hyun;Park, Hong-Chae;Yoon, Seog-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.4
    • /
    • pp.263-268
    • /
    • 2013
  • Porous biphasic calcium phosphate scaffolds were fabricated by a freeze-gel casting technique using a tertiary-butyl alcohol (TBA)-based slurry. After sintering, unidirectional macropore channels of scaffolds aligned regularly along the TBA ice growth direction were tailored simultaneously with micropores formed in the outer wall of the pore channels. The crystallinity, micro structure, pore configuration, bulk density, and compressive strength for the scaffolds were investigated with X-ray diffractometery, scanning electron microscopy analysis, a water immersion method, and a universal test machine. The results revealed that the sintered porosity and pore size generally resulted in a high solid loading which resulted in low porosity and small pore size, which relatively increased the higher compressive strength. After being sintered at $1100-1300^{\circ}C$, the scaffolds showed an average porosity and compressive strength in the range 35.1-74.9% and 65.1-3.0 MPa, respectively, according to the processing conditions.

Effects of Partial Substitution of CeO2 with M2O3 (M = Yb, Gd, Sm) on Electrical Degradation of Sc2O3 and CeO2 Co-doped ZrO2

  • Shin, Hyeong Cheol;Yu, Ji Haeng;Lim, Kyoung Tae;Lee, Hee Lak;Baik, Kyeong Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.500-505
    • /
    • 2016
  • Scandia-stabilized zirconia co-doped with $CeO_2$ is a promising electrolyte for intermediate temperature SOFC, but still shows rapid degradation during a long-term operation. In this study, $CeO_2$ (1 mol%) as a stabilizer is partially substituted with lanthanum oxides ($M_2O_3$, M=Yb, Gd, Sm) to stabilize a cubic phase and thus durability in reducing atmosphere. 0.5M0.5Ce10ScSZ electrolytes were prepared by solid state reaction and sintered at $1450^{\circ}C$ for 10 h to produce dense ceramic specimens. With addition of the lanthanum oxide, 0.5M0.5Ce10ScSZ showed lower degradation rates than 1Ce10ScSZ. Since $Gd_2O_3$ showed the highest ionic conductivity among the co-dopants, an electrolyte-supported cell with 0.5Gd0.5Ce10ScSZ was prepared to compare its long-term performance with that of 1Ce10ScSZ-based cell. Maximum power density of 0.5Gd0.5Ce10ScSZ-based cell was degraded by about 2.3% after 250 h, which was much lower than 1Ce10ScSZ-based cell (4.2%).