• Title/Summary/Keyword: solid bed

Search Result 303, Processing Time 0.026 seconds

The Application of Gas-Solid Reactor Model: Consideration of Reduction reaction model (기체 고체 반응기 모형의 응용: 환원로 반응 모형 고찰)

  • Eum, Minje;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.79-82
    • /
    • 2012
  • The gas-solid reactor, such as rotary kiln, sintering bed, incinerator and CFB boiler, is the one of most widely used industrial reactors for contacting gases and solids. the gas-solid reactor are mainly used for drying, calcining and reducing solid materials. In the gas-solid reactor, heat is supplied to the outside of the wall or inside of the reactor. The heat transfer in gas-solid reactor encompasses all the modes of transport mechanisms, that is, conduction, convection and radiation. The chemical reactions occurring in the bed are driven by energy supplied by the heat transfer. This paper deal with the effect of heat transfer and chemical reaction in the gas-solid reactor.

  • PDF

Numerical Predictions of Heat Transfer in the Fluidized Bed Heat Exchanger

  • Ahn, Soo-Whan
    • Journal of agriculture & life science
    • /
    • v.44 no.4
    • /
    • pp.29-43
    • /
    • 2010
  • The numerical analysis by using CFX 11.0 commercial code was done for proper design of the heat exchanger. The present experimental studies were also conducted to investigate the effects of circulating solid particles on the characteristics of fluid flow, heat transfer and cleaning effect in the fluidized bed vertical shell and tube type heat exchanger with counterflow, at which a variety of solid particles such as glass ($3mm{\Phi}$), aluminum ($2{\sim}3mm{\Phi}$), steel ($2{\sim}2.5mm{\Phi}$), copper ($2.5mm{\Phi}$) and sand ($2{\sim}4mm{\Phi}$) were used in the fluidized bed with a smooth tube. Seven different solid particles have the same volume, and the effects of various parameters such as water flow rates, particle diameter, materials and geometry were investigated. The present experimental and numerical results showed that the flow velocity range for collision of particles to the tube wall was higher with heavier density solid particles, and the increase in heat transfer was in the order of sand, copper, steel, aluminum, and glass. This behavior might be attributed to the parameters such as surface roughness or particle heat capacity.

Effect of Partial Oxidation of Wood and RDF in a Fluidized Bed (유동상 반응로 조건에서 목재와 RDF 부분 산화의 영향)

  • Kim, Tae-Hyun;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.2
    • /
    • pp.23-32
    • /
    • 2008
  • Gasification characteristics in the fluidized bed reactor are essential for the design of a gasification furnace to optimize the operation condition. Moisture content of the solid fuel is one of the important factors to influence directly the gasification characteristics. So it is necessary to investigate the effect of moisture content of solid fuel in partial oxidation condition. Gasification characteristics are investigated with results from thermogravimetric analyzer and lab-scale fluidized bed reactor for wood and RDF samples along with changing moisture contents. Additionally lab-scale fluidized bed reactor was run continuously and gas concentrations at the exit were measured. It is observed that the rate of reaction in partial oxidation condition is between the results from the combustion environment and from the inert condition. Moisture content in a particle slows down the heating rate of a particle. So, reaction is delayed by the moisture content. However, RDF samples those are easy to break-up don't show the effect of moisture content. The result of continuous operation condition shows that proper moisture content promotes gasification because steam from the particles helps gasification of the solid fuel. A simulation to predict the syn-gas composition was conducted by the Aspen Plus process simulator. The cold gas efficiency of the experiment was compared with results from the simulation.

  • PDF

Numerical analysis of fluid flow and thermal fields in the vertical fluidized bed heat exchanger (수직형 순환유동층 열교환기에서의 유체유동과 온도장의 수치해석)

  • Lee, B.C.;Kang, H.K.;Lee, M.S.;Ahn, S.W.
    • Journal of Power System Engineering
    • /
    • v.16 no.4
    • /
    • pp.24-29
    • /
    • 2012
  • The numerical analysis by using CFX 11.0 commercial code was done for prediction of fluid flow and thermal field in the vertical heat exchanger. The present experimental studies were also conducted to investigate the effects of circulating solid particles on the fluid flow and temperatures in the fluidized bed vertical shell and tube type heat exchanger with counterflow, at which the solid particles of glasses (3 $mm{\Phi}$) were used in the fluidized bed with a smooth tube. The effect of circulation on the distance(L) of tube inlet and baffle plate was also examined. The present experimental and numerical results showed that the particles in the distance (Ds) of 15 mm showed a more efficient circulation without stacked the space and the LMTD(Log Mean Temperature Difference) in the fluidized bed type was much lower than that in the typical type shell and tube heat exchanger.

Axial Solid Holdup in a Circulating Fluidized Bed Plasma Reactor under Reduced Pressure (감압 순환유동층 플라즈마 반응기의 축방향 고체체류량)

  • Park, Sounghee
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.527-532
    • /
    • 2016
  • The effects of gas velocity and solid circulation rate on the axial solid holdup distribution have been determined in a 10 mm-I.D. ${\times}$ 800 mm-high circulating fluidized bed plasma reactor under reduced pressure (1torr). Polystyrene polymer powder and nitrogen gas are used as solid and gas materials respectively. The change of solid circulation rate by a large gas flow rate of the riser (40~80 sccm) is also possible by a relatively small gas flow rate of the solid recirculation part (6.6~9.9 sccm). The solid circulation rate in the reactor under reduced pressure increases with increasing aeration velocity in the solid recirculation part. The axial solid holdup in the riser decreases from the dense at the bottom to the dilute phase at the top section of the riser. Solid holdups at the axial positions in the riser increase linearly with increasing solid circulating velocity. From these results, we could determine the position of plasma load for good plasma ignition, maintain and plasma reaction.

Effect of Loop Seal Geometry on Solid Circulation in a Gas-Solid Fluidized Bed (기체-고체 유동층에서 루프실의 형상이 고체순환에 미치는 영향)

  • RYU, HO-JUNG;JO, SUNG-HO;LEE, SEUNG-YONG;LEE, DOYEON;NAM, HYUNGSEOK;HWANG, BYUNG WOOK;KIM, HANA;WON, YOO SEOB;KIM, JUNGHWAN;BAEK, JEOM-IN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.4
    • /
    • pp.312-319
    • /
    • 2019
  • Effect of loop seal geometry on solid circulation characteristics was investigated with two different types of upper loop seals and lower loop seals in a gas-solid fluidized bed system. Upper loop seal which has a wide gap between solid intake and outlet parts requires more fluidization gas to maintain smooth solid circulation. Moreover, the lower loop seal which has a wide gap requires more fluidization gas to achieve the same solid circulation rate. These results can be explained by results of minimum fluidization velocity in the lower loop seals. Consequently, if a loop seal has a wide gap between solid intake and outlet parts, more fluidization gases should be fed to ensure enough solid circulation rate and smooth solid circulation.

Characteristics of Fluid Flow and Heat Transfer in a Fluidized Bed Heat Exchanger (순환유동층 열교환기내 유동과 열전달 특성)

  • 안수환;이병창;김원철;이윤표
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.4
    • /
    • pp.315-323
    • /
    • 2002
  • The commercial viability of heat exchanger is mainly dependent on their long-term fouling characteristics because the fouling increases the pressure loss and degrades the thermal performance of a heat exchanger. An experimental study was performed to investigate the characteristics of fluid flow and heat transfer in a fluidized bed heat exchanger with circulating various solid particles. The present work showed that the drag force coefficients of particles in the internal flow were higher than those in the external flow, in addition, the solid particle periodically hitting the tube wall broke the thermal boundary layer, and increased the rate of heat transfer. Particularly when the flow velocity was low, the effect was more pronounced.

On-Channel Micro-Solid Phase Extraction Bed Based on 1-Dodecanethiol Self-Assembly on Gold-Deposited Colloidal Silica Packing on a Capillary Electrochromatographic Microchip

  • Park, Jongman;Kim, Shinseon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.45-50
    • /
    • 2014
  • A fully packed capillary electrochromatographic (CEC) microchip with an on-column micro-solid phase extraction (SPE) bed for the preconcentration and separation of organic analytes was prepared. A linear microchannel with monodisperse colloidal silica packing was formed on a cyclic olefinic copolymer microchip with two reservoirs on both ends. Silver-cemented silica packing frit structure was formed at the entrance of the microchannel by electroless plating treatment as a base layer. A gold coating was formed on it by reducing $Au^{3+}$ to gold with hydroxylamine. Finally micro-SPE bed was formed by self-assembly adsorption of 1-dodecanethiol on it. Micro-SPE beds were about 100-150 ${\mu}m$ long. Approximately $10^3$ fold sensitivity enhancements for Sulforhodamine B, and Fluorescein in nM concentration levels were possible with 80 s preconcentration. Basic extraction characteristics were studied.

Transport Phenomena in Solid State Fermentation: Oxygen Transport in Static Tray Fermentors

  • Muniswaran, P.K.A.;Moorthy, S.Sundara;Charyulu, N.C.L.N.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.6
    • /
    • pp.362-366
    • /
    • 2002
  • A mathematical model has been developed for describing the oxygen concentration during the exponential growth of microorganisms, in a static solid substrate bed supported on a tray fermentor. The model equations comprise of one partial differential equation for mass transfer and an ordinary differential equation of growth. After nondimensionlisation, analytical solution tn the model has been obtained by the method of Laplace transforms. An expression for critical thickness of bed is deduced from the model equation. The significance of the model in the design of tray fermentors is discussed. The validity of the discussion is verified by taking an illustration from the literature.

Gas-Solid Heat Transfer Analysis of Bubbling Fluidized Bed at Bottom Ash Cooler (바닥재 냉각기 기포유동층의 기체-고체 연전달 분석)

  • Gyu-Hwa, Lee;Dongwon, Kim;Jong-min, Lee;Kyoungil, Park;Byeongchul, Park
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.97-101
    • /
    • 2022
  • In this study we investigated the gas to solid heat transfer of bubbling fluidized bed bottom ash cooler installed at the Donghae power plant in South Korea. Several different analyses are done through 1-D calculations and 3-D CFD simulation to predict the bottom ash exit temperatures when it exits the ash cooler. Three different cases are set up to have consideration of unburnt carbon in the bottom ash. Sensible heat comparison and heat transfer calculation between the fluidization air and the bottom ash are conducted and 3-D CFD analysis is done on three cases. We have obtained the results that the bottom ash with unburnt carbon is exiting the ash cooler, exceeding the targeted temperature from both 1-D calculation and 3-D CFD simulation.