• Title/Summary/Keyword: solid

Search Result 17,735, Processing Time 0.038 seconds

Solidification Analysis for Surface Defect Prediction of Rheology Forming Process Considering Flow Phenomena of Liquid and Solid Region (액상과 고상의 유동현상을 고려한 레오로지 성형공정의 표면결함예측을 위한 응고해석)

  • Seo, Pan-Ki;Jung, Young-Jin;Kang, Chung-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.1971-1981
    • /
    • 2002
  • Two-dimensional solidification analysis during rheology forming process of semi-solid aluminum alloy has been studied. Two-phase flow model to investigate the velocity field and temperature distribution is proposed. The proposed mathematical model is applied to the die shape of the two types. To calculate the velocities and temperature fields during rheology forming process, the each governing equations correspondent to the liquid and solid region are adapted. Therefore, each numerical model considering the solid and liquid coexisting region within the semi-solid material have been developed to predict the defects of rheology forming parts. The Arbitrary Boundary Maker And Cell(ABMAC) method is employed to solve the two-Phase flow model of the Navier-Stokes equation. Theoretical model basis of the two-phase flow model is the mixture rule of solid and liquid phases. This approach is based on using the liquid and solid viscosity. The Liquid viscosity is pure liquid state value, however solid viscosity is considered as a function of the shear rate, solid fraction and power law curves.

Effects of Cyclone and Freeboard Geometry on Solid Entrainment Loss in a Gas-Solid Fluidized Bed (기체-고체 유동층에서 사이클론과 프리보드의 형상이 고체 비산 손실에 미치는 영향)

  • RYU, HO-JUNG;JO, SUNG-HO;LEE, SEUNG-YONG;LEE, DOYEON;NAM, HYUNGSEOK;HWANG, BYUNG WOOK;KIM, HANA;WON, YOO SEOB;KIM, JUNGHWAN;BAEK, JEOM-IN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.4
    • /
    • pp.330-337
    • /
    • 2019
  • Effects of cyclone and freeboard geometry on solid entrainment loss were investigated with two different types of cyclones and bubbling beds in a gas-solid fluidized bed system. The solid entrainment loss was measured by collected fines during continuous solid circulation condition. Bubbling bed which has an expanded freeboard showed less solid entrainment than the bubbling bed which has a straight freeboard. The cyclone which has a wide gas-solid mixture inlet showed less solid entrainment loss than the cyclone which has a narrow gas-solid mixture inlet. Moreover, the cyclone has a wide gas-solid mixture inlet can capture smaller particles.

Design of a Microthruster using Laser-Sustained Solid Propellant Combustion

  • Kakami, Akira;Masaki, Shinichiro;Horisawa, Hideyuki;Tachibana, Takeshi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.605-610
    • /
    • 2004
  • Solid propellants allow thrusters to be light-weight, com-pact and robust because they require neither tank nor valve, Moreover, the solid propellant will not leak, spill or slosh. Consequently, the solid propellant thruster is one of the potential candidates for the microthruster. On the other hand, the control of the solid propellant combustion is difficult, since the conventional solid propellant continues to bum until all the stored propellant is consumed. Although particular devices like thrust reverser were designed to control the combustion, these devices were rarely used in the practical rocket motors. These devices rise thruster weight as well as complicate the thruster operation. In this study, a solid propellant microthruster using laser sustained combustion was designed in order to develop a high-efficiency microthruster overcoming the previously-mentioned difficulty. This designed thruster has semiconductor lasers and non-self-combustible solid propellants in addition to the conventional solid propellant thruster. In this designed thruster, the semiconductor laser controls the combustion of the non-self-combustible solid propellant. In order to demonstrate that the solid propellant combustion is controllable with laser, some non-self-combustible solid propellants were irradiated with the laser at a back-pressure of about 1㎪. A 40-W class Neodymium Yttrium Aluminum Garnet (ND:YAG) laser was used as a tentative alternate to the semiconductor laser. This experiment has shown that the solid propellant combustion was controllable with 10- W class laser irradiation.

  • PDF

Experimental and Numerical Analysis of Package and Solder Ball Crack Reliability using Solid Epoxy Material (Solid Epoxy를 이용한 패키지 및 솔더 크랙 신뢰성 확보를 위한 실험 및 수치해석 연구)

  • Cho, Youngmin;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.1
    • /
    • pp.55-65
    • /
    • 2020
  • The use of underfill materials in semiconductor packages is not only important for stress relieving of the package, but also for improving the reliability of the package during shock and vibration. However, in recent years, as the size of the package becomes larger and very thin, the use of the underfill shows adverse effects and rather deteriorates the reliability of the package. To resolve these issues, we developed the package using a solid epoxy material to improve the reliability of the package as a substitute for underfill material. The developed solid epoxy was applied to the package of the application processor in smart phone, and the reliability of the package was evaluated using thermal cycling reliability tests and numerical analysis. In order to find the optimal solid epoxy material and process conditions for improving the reliability, the effects of various factors on the reliability, such as the application number of solid epoxy, type of PCB pad, and different solid epoxy materials, were investigated. The reliability test results indicated that the package with solid epoxy exhibited higher reliability than that without solid epoxy. The application of solid epoxy at six locations showed higher reliability than that of solid epoxy at four locations indicating that the solid epoxy plays a role in relieving stress of the package, thereby improving the reliability of the package. For the different types of PCB pad, NSMD (non-solder mask defined) pad showed higher reliability than the SMD (solder mask defined) pad. This is because the application of the NSMD pad is more advantageous in terms of thermomechanical stress reliability because the solderpad bond area is larger. In addition, for the different solid epoxy materials with different thermal expansion coefficients, the reliability was more improved when solid epoxy having lower thermal expansion coefficient was used.

Effects of Operating Variables on Solid Separation Rate in Two-interconnected Fluidized Beds System for Selective Solid Circulation (선택적 고체순환을 위한 2탑 유동층 시스템에서 고체분리속도에 미치는 조업변수들의 영향)

  • Ryu, Ho-Jung;Jin, Gyoung-Tae;Bae, Dal-Hee;Kim, Hong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.355-361
    • /
    • 2009
  • Effects of operating variables on solid separation rate in two-interconnected fluidized beds system for selective solid circulation have been investigated. Coarse(212~300 or $425{\sim}600{\mu}m$) and fine($63{\sim}106{\mu}m$) particles were separated using the solid separator and the solid separation rate was ranged from 66 to 987 g/min. The solid separation rate increased as the gas velocity through the solid injection nozzle, solid height, diameter of solid injection nozzle, particle size of coarse particles, aperture of the solid separator, and weight fraction of fines in the solid mixture increased. However, the effect of the fluidization velocity was negligible.

Solid Circulation Characteristics in a 3 kW Chemical-looping Combustor (3 kW급 매체순환식 가스연소기의 고체순환특성)

  • Ryu, Ho-Jung;Park, Jaehyeon;Kim, Hong-Ki;Park, Moon-Hee
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1057-1062
    • /
    • 2008
  • To overcome disadvantages of conventional two interconnected fluidized beds system, a novel two-interconnected fluidized bed process has been adopted to 3kW chemical-looping combustor. This system has two bubbling beds, solid injection nozzles, solid conveying lines, and downcomers. In this study, effects of operating variables such as gas velocity through the solid injection nozzle, fluidizing velocity, solid height, geometry of solid intake hole, bed temperature on solid circulation rate have been investigated in a 3kW chemical-looping combustor. The solid circulation rate increased as the solid height and the opening area of solid intake holes increased. The effect of the fluidizing velocity and the bed temperature were negligible. Moreover, long-term operation of continuous solid circulation up to 50 hours has been performed to check feasibility of stable operation. The pressure drop profiles in the bubbling beds and the downcomers were maintained steadily and solid circulation was smooth and stable.

An Experimental Study on the Fabrication and the Compression Behavior of Semi-Solid Aluminum Material (반응용 알루미늄재료의 제조 및 압축거동에 관한 실험적 연구)

  • Gang, Chung-Gil;Yun, Jong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.796-805
    • /
    • 1996
  • A fabrication process using Semi-Solid Material(SSM) for casting alloy has been studied to demonstrate the possibility for mass production with controlled solid fraction. The SSM was fabricated under the various solid fractions and preheating temperatures of mold. The behaviour of a semi-solid global microstructure has been investigated under the various heating and die temperatures for solid fraction. The effect of reheating time on the globularization of SSM microstructure has been investigated in detail. And the behavior of SSM which has the solid fraction 0.5 was observed under compression. The stress strain relationship was also obtained for the compression test of semi-solid materials. The rheological behaviour of semi-solid with globule microstructure was investigated as a function of the compression velocity under isothermal holing conditions.

A Study on Induction Heating with Forced Surface Cooling in Semi-Solid Forming Process (반용융 성형에서 강제 표면 냉각에 의한 유도 가열 방법에 관한 연구)

  • Park Joon Hong;Choi Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.97-102
    • /
    • 2005
  • The procedure of semi-solid forming is composed of heating a billet, forming, compression holding and ejecting step. There are several methods to heat a billet during semi-solid forming process such as electric heating and induction heating. Usually in semi-solid forming process, induction heating has been adopted to achieve more uniform temperature of semi-solid material. Although induction heating is better method than any others, however, there is still difference of temperature between internal part and surface part of semi-solid material. Worse yet, in case of high liquid fraction of semi-solid material, liquid of the billet will flow down though solid of the billet still remains, which is very difficult to handle. In the present study, induction heating of semi-solid material with compulsive surface cooling has been performed to obtain uniform distribution of temperature. Distribution of temperature of the billets was measured and compared with that of conventional distribution of temperature. By this new induction heating method, not only temperature over the whole billet become uniform, but also control of temperature is possible.

Optimal Reheating Condition of Semi-solid Material in Semi-solid Forging by Neural Network

  • Park, Jae-Chan;Kim, Young-Ho;Park, Joon-Hong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.2
    • /
    • pp.49-56
    • /
    • 2003
  • As semi-solid forging (SSF) is compared with conventional casting such as gravity die-casting and squeeze casting, the product without inner defects can be obtained from semi-solid forming and globular microstructure as well. Generally, SSF consists of reheating, forging, and ejecting processes. In the reheating process, the materials are heated up to the temperature between the solidus and liquidus line at which the materials exists in the form of liquid-solid mixture. The process variables such as reheating time, reheating temperature, reheating holding time, and induction heating power has large effect on the quality of the reheated billets. It is difficult to consider all the variables at the same time for predicting the quality. In this paper, Taguchi method, regression analysis and neural network were applied to analyze the relationship between processing conditions and solid fraction. A356 alloy was used for the present study, and the learning data were extracted from the reheating experiments. Results by neural network were in good agreement with those by experiment. Polynominal regression analysis was formulated using the test data from neural network. Optimum processing condition was calculated to minimize the grain size and solid fraction standard deviation or to maximize the specimen temperature average. Discussion is given about reheating process of row material and results are presented with regard to accurate process variables fur proper solid fraction, specimen temperature and grain size.

A Study on Induction Heating with Compulsive Surface Cooling in Semi-Solid Forming Process (반용융 성형에서 간제 표면 냉각에 의한 유도 가열 방법에 관한 연구)

  • Choi, J. C.;Kim, B. M.;Choi, Y.;Park, J. H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.465-468
    • /
    • 2000
  • The procedure of semi-solid forming is composed of heating a billet, forming, compression holding and ejecting step. There are several methods to heat a billet during semi-solid forming process such as electric heating and induction heating. Usually in semi-solid forming process, induction heating has been adopted to achieve more uniform temperature of semi-solid material. Although induction heating is better method than any others, however, there is still difference of temperature between internal part and surface part of semi-solid material. Worse yet, in case of high liquid fraction of semi-solid material, liquid of the billet will flow down though solid of the billet still remains, which is very difficult to handle. In the present study, induction heating of semi-solid material with compulsive surface cooling has been performed to obtain uniform distribution of temperature. Distribution of temperature of the billets was measured and compared with that of conventional distribution of temperature. By this new induction heating method, not only temperature over the whole billet become uniform, but also control of temperature is possible.

  • PDF